Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the genus of a group


Author: Arthur T. White
Journal: Trans. Amer. Math. Soc. 173 (1972), 203-214
MSC: Primary 05C10
DOI: https://doi.org/10.1090/S0002-9947-1972-0317980-2
MathSciNet review: 0317980
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The genus of a group is defined to be the minimum genus for any Cayley color graph of the group. All finite planar groups have been determined, but little is known about the genus of finite nonplanar groups. In this paper two families of toroidal groups are presented; the genus is calculated for certain abelian groups; and upper bounds are given for the genera of the symmetric and alternating groups and for some hamiltonian groups.


References [Enhancements On Off] (What's this?)

  • [1] L. W. Beineke and F. Harary, The genus of the $ n$-cube, Canad. J. Math. 17 (1965), 494-496. MR 31 #81. MR 0175805 (31:81)
  • [2] G. Birkhoff and S. Mac Lane, Algebra, Macmillan, New York, 1967. MR 35 #5266. MR 0214415 (35:5266)
  • [3] H. R. Brahana, Regular maps on an anchor ring, Amer. J. Math. 48 (1926), 225-240. MR 1506591
  • [4] W. Burnside, Theory of groups of finite order, 2nd ed., Cambridge Univ. Press, Cambridge, 1911.
  • [5] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 14, Springer-Verlag, Berlin and New York, 1965. MR 30 #4818. MR 0174618 (30:4818)
  • [6] R. Dedekind, Über Gruppen, deren samtliche Teiler Normalteiler sind, Math. Ann. 48 (1897), 137-168.
  • [7] W. Dyck, Gruppentheoretische Studien, Math. Ann. 20 (1882), 1-45. MR 1510147
  • [8] J. Edmonds, A combinatorial representation for polyhedral surfaces, Notices Amer. Math. Soc. 7 (1960), 646. Abstract #572-1.
  • [9] F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969. MR 41 #1566. MR 0256911 (41:1566)
  • [10] H. Levinson, On the genera of graphs of group presentations, Internat. Conf. on Combinatorial Math. (1970), Ann. New York Acad. Sci. 175 (1970), 277-284. MR 42 #2968. MR 0268069 (42:2968)
  • [11] H. Maschke, The representation of finite groups, especially of the rotation groups of the regular bodies in three-and four-dimensional space, by Cayley's color diagrams, Amer. J. Math. 18 (1896), 156-188. MR 1505708
  • [12] G. Ringel, Über drei kombinatorische Probleme am $ n$-dimensionalen Würfel und Würfelgitter, Abh. Math. Sem. Univ. Hamburg 20 (1955), 10-19. MR 17, 772. MR 0075586 (17:772h)
  • [13] -, Genus of graphs, Proc. Calgary Internat. Conf. Combinatorial Structures and Their Applications (Calgary, Alta., 1969), Gordon and Breach, New York, 1970, pp. 361-366. MR 42 #7555. MR 0272674 (42:7555)
  • [14] A. T. White, The genus of repeated cartesian products of bipartite graphs, Trans. Amer. Math. Soc. 151 (1970), 393-404. MR 0281653 (43:7368)
  • [15] J. W. T. Youngs, Minimal imbeddings and the genus of a graph, J. Math. Mech. 12 (1963), 303-315. MR 26 #3043. MR 0145512 (26:3043)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05C10

Retrieve articles in all journals with MSC: 05C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0317980-2
Keywords: Graph, group, generators and relations, Cayley color graph of a group, imbedding, genus of a graph, genus of a group
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society