Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Algebras of analytic germs


Author: William R. Zame
Journal: Trans. Amer. Math. Soc. 174 (1972), 275-288
MSC: Primary 32E25
DOI: https://doi.org/10.1090/S0002-9947-1972-0313545-7
MathSciNet review: 0313545
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let S be a Stein-Riemann domain with global local coordinates $ {\sigma _1}, \cdots ,{\sigma _n}$. Let X be a compact subset of S. Denote by $ \mathcal{O}(X)$ the algebra of germs on X of functions analytic near X. A subalgebra of $ \mathcal{O}(X)$ containing the germs of $ {\sigma _1}, \cdots ,{\sigma _n}$ and the constants is stable if it is closed under differen tiation with respect to the coordinates $ {\sigma _1}, \cdots ,{\sigma _n}$. In this paper the relationship of a stable algebra to its spectrum is investigated. In general, there is no natural imbedding of the spectrum into a Stein manifold. We give necessary and sufficient conditions that such an imbedding exists, and show that a stable algebra whose spectrum admits such an imbedding has a simple description. More generally, we show that a stable algebra is determined by its spectrum. This leads to certain approximation theorems.


References [Enhancements On Off] (What's this?)

  • [1] F. T. Birtel, Some holomorphic function algebras, Summer Gathering on Function Algebras (Aarhus, 1969), Matematik Inst., Aarhus Univ., Aarhus, 1969, pp. 11-18. MR 40 #7806. MR 0254598 (40:7806)
  • [2] -, Some aspects of function algebras, Nieuw Arch. Wisk. (3) 17 (1969), 171-187. MR 40 #7805. MR 0254597 (40:7805)
  • [3] F. T. Birtel and W. R. Zame, Some analytic function algebras, Proc. Sympos. on Several Complex Variables, Park City, Utah, 1970, pp. 1-10.
  • [4] E. Bishop, Holomorphic completions, analytic continuations, and the interpolation of semi-norms, Ann. of Math. (2) 78 (1963), 468-500. MR 27 #4958. MR 0155016 (27:4958)
  • [5] J. E. Bjork, Every compact set in $ {C^n}$ is a good compact set, Ann. Inst. Fourier (Grenoble) 20 (1970), fasc. 1, 493-498. MR 41 #7154. MR 0262548 (41:7154)
  • [6] N. Bourbaki, Éléments de mathématique. Fasc. XV. Livre V: Espaces vectoriels topologiques, Actualités Sci. Indust., no. 1189, Hermann, Paris, 1953. MR 14, 880. MR 0054161 (14:880b)
  • [7] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969. MR 0410387 (53:14137)
  • [8] A. Guichardet, Special topics in topological algebras, Gordon and Breach, New York, 1968. MR 39 #4673. MR 0243351 (39:4673)
  • [9] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR 31 #4927. MR 0180696 (31:4927)
  • [10] R. Harvey and R. O. Wells, Jr., Compact holomorphically convex subsets of a Stein manifold, Trans. Amer. Math. Soc. 136 (1969), 509-516. MR 38 #3470. MR 0235158 (38:3470)
  • [11] L. Van Hove, Topologie des espaces fonctionnels analytiques et des groupes infinis de transformations, Acad. Roy. Belgique Bull. Cl. Sci. (5) 38 (1952), 333-351. MR 14, 287. MR 0050161 (14:287b)
  • [12] W. R. Zame, Stable algebras of holomorphic germs, Dissertation, Tulane University, New Orleans, La., 1970.
  • [13] -, Algebras of analytic functions in the plane, Pacific J. Math. (to appear). MR 0383084 (52:3965)
  • [14] Jun-iti Nagata, Modern dimension theory, Bibliotheca Math., vol. 6, Interscience, New York, 1965. MR 34 #8380. MR 0208571 (34:8380)
  • [15] E. Kallin, A nonlocal function algebra, Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 821-824. MR 27 #2878. MR 0152907 (27:2878)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32E25

Retrieve articles in all journals with MSC: 32E25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0313545-7
Keywords: Riemann domains, germs of analytic functions, differentiably stable algebras, spectrum, approximation of analytic functions
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society