Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Tensor products of group algebras


Author: J. E. Kerlin
Journal: Trans. Amer. Math. Soc. 175 (1973), 1-36
MSC: Primary 46M05; Secondary 43A20
DOI: https://doi.org/10.1090/S0002-9947-1973-0312286-0
MathSciNet review: 0312286
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let C be a commutative Banach algebra. A commutative Banach algebra A is a Banach C-algebra if A is a Banach C-module and $ c \cdot (aa') = (c \cdot a)a'$ for all $ c \in C,a,a' \in A$. If $ {A_1}, \cdots ,{A_n}$ are commutative Banach C-algebras, then the C-tensor product $ {A_1}{ \otimes _C} \cdots { \otimes _C}{A_n} \equiv D$ is defined and is a commutative Banach C-algebra. The maximal ideal space $ {\mathfrak{M}_D}$ of D is identified with a closed subset of $ {\mathfrak{M}_{{A_1}}} \times \cdots \times {\mathfrak{M}_{{A_n}}}$ in a natural fashion, yielding a generalization of the Gelbaum-Tomiyama characterization of the maximal ideal space of $ {A_1}{ \otimes _\gamma } \cdots { \otimes _\gamma }{A_n}$.

If $ C = {L^1}(K)$ and $ {A_i} = {L^1}({G_i})$, for LCA groups K and $ {G_i},i = 1, \cdots ,n$, then the $ {L^1}(K)$-tensor product D of $ {L^1}({G_1}), \cdots ,{L^1}({G_n})$ is uniquely written in the form $ D = N \oplus {D_e}$, where N and $ {D_e}$ are closed ideals in D, $ {L^1}(K) \cdot N = \{ 0\} $, and $ {D_e}$ is the essential part of D, i.e. $ {D_e} = {L^1}(K) \cdot D$. Moreover, if $ {D_e} \ne \{ 0\} $, then $ {D_e}$ is isometrically $ {L^1}(K)$-isomorphic to $ {L^1}({G_1}{ \otimes _K} \cdots { \otimes _K}{G_n})$, where $ {G_1}, \cdots ,{G_n}$ is a K-tensor product of $ {G_1}, \cdots ,{G_n}$ with respect to naturally induced actions of K on $ {G_1}, \cdots ,{G_n}$. The above theorems are a significant generalization of the work of Gelbaum and Natzitz in characterizing tensor products of group algebras, since here the algebra actions are arbitrary. The Cohen theory of homomorphisms of group algebras is required to characterize the algebra actions between group algebras. Finally, the space of multipliers $ {\operatorname{Hom}_{{L^1}(K)}}({L^1}(G),{L^\infty }(H))$ is characterized for all instances of algebra actions of $ {L^1}(K)$ on $ {L^1}(G)$ and $ {L^1}(H)$, generalizing the known result when $ K = G = H$ and the module action is given by convolution.


References [Enhancements On Off] (What's this?)

  • [1] P. J. Cohen, On homomorphisms of group algebras, Amer. J. Math. 82 (1960), 213-226. MR 24 #A3232. MR 0133398 (24:A3232)
  • [2] B. R. Gelbaum, Tensor products of Banach algebras, Canad. J. Math. 11 (1959), 297-310. MR 21 #2922. MR 0104162 (21:2922)
  • [3] -, Tensor products and related questions, Trans. Amer. Math. Soc. 103 (1962), 525-548. MR 25 #2406. MR 0138966 (25:2406)
  • [4] -, Tensor products over Banach algebras, Trans. Amer. Math. Soc. 118 (1965), 131-149. MR 31 #2629. MR 0178371 (31:2629)
  • [5] -, Tensor products of group algebras, Pacific J. Math. 22 (1967), 241-250. MR 35 #5862. MR 0215017 (35:5862)
  • [6] J. E. Gilbert, On projections of $ {L^\infty }(G)$ onto translation-invariant subspaces, Proc. London Math. Soc. (3) 19 (1969), 69-88. MR 39 #6019. MR 0244705 (39:6019)
  • [7] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [8] Larry C. Grove, Tensor products and compact groups, Illinois J. Math. 11 (1967), 628-634. MR 37 #766. MR 0225171 (37:766)
  • [9] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. 1: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [10] -, Abstract harmonic analysis. Vol. 2: Structure and analysis for compact groups analysis on locally compact Abelian groups, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, New York and Berlin, 1970. MR 41 #7378.
  • [11] G. P. Johnson, Spaces of functions with values in a Banach algebra, Trans. Amer. Math. Soc. 92 (1959), 411-429. MR 21 #5910. MR 0107185 (21:5910)
  • [12] J. Edward Kerlin, On algebra actions on a group algebra, Pacific J. Math. 38 (1971), 669-680. MR 0361618 (50:14063)
  • [13] Lawrence Lardy, Tensor products over semigroup algebras, Ph.D. Dissertation, University of Minnesota, Minneapolis, Minn., 1964.
  • [14] Boaz Natzitz, Tensor products of Banach algebras, Canad. Math. Bull. 11 (1968), 691-701. MR 39 #1989. MR 0240643 (39:1989)
  • [15] H. Reiter, Contributions to harmonic analysis: VI, Ann. of Math. (2) 77 (1963), 552-562. MR 27 #1778. MR 0151795 (27:1778)
  • [16] -, Classical harmonic analysis and locally compact groups, Oxford Univ. Press, Oxford, 1968. MR 0306811 (46:5933)
  • [17] C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [18] Marc A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443-491. MR 36 #6544. MR 0223496 (36:6544)
  • [19] -, Multipliers and tensor products of $ {L^p}$-spaces of locally compact groups, Studia Math. 33 (1969), 71-82. MR 39 #6078. MR 0244764 (39:6078)
  • [20] W. Rudin, Fourier analysis on groups, Interscience, New York, 1967. MR 0152834 (27:2808)
  • [21] R. Schatten, A theory of cross spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N. J., 1950. MR 12, 186. MR 0036935 (12:186e)
  • [22] Bert M. Schreiber, On the coset ring and strong Ditkin sets, Pacific J. Math. 32 (1970), 805-812. MR 41 #4140. MR 0259502 (41:4140)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46M05, 43A20

Retrieve articles in all journals with MSC: 46M05, 43A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0312286-0
Keywords: Banach modules, Banach C-algebra, C-algebra tensor product, structure space, $ {L^1}$-group algebra, locally compact Abelian group, dual group, tensor product of group algebras, tensor products of groups, spectral synthesis, coset ring, multipliers
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society