Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Boundary values of solutions of elliptic equations satisfying $ H\sp{p}$ conditions


Author: Robert S. Strichartz
Journal: Trans. Amer. Math. Soc. 176 (1973), 445-462
MSC: Primary 35J67
DOI: https://doi.org/10.1090/S0002-9947-1973-0320525-5
MathSciNet review: 0320525
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let A be an elliptic linear partial differential operator with $ {C^\infty }$ coefficients on a manifold $ {\mathbf{\Omega }}$ with boundary $ {\mathbf{\Gamma }}$. We study solutions of $ Au = \sigma $ which satisfy the $ {H^p}$ condition that $ {\sup _{0 < t < 1}}{\left\Vert {u( \cdot ,t)} \right\Vert _p} < \infty $, where we have chosen coordinates in a neighborhood of $ {\mathbf{\Gamma }}$ of the form $ {\mathbf{\Gamma }} \times [0,1]$ with $ {\mathbf{\Gamma }}$ identified with $ t = 0$. If A has a well-posed Dirichlet problem such solutions may be characterized in terms of the Dirichlet data $ u( \cdot ,0) = {f_0},{(\partial /\partial t)^j}u( \cdot ,0) = {f_j},j = 1, \cdots ,m - 1$ as follows: $ {f_0} \in {L^p}$ (or $ \mathfrak{M}$ if $ p = 1$) and $ {f_j} \in {\mathbf{\Lambda }}( - j;p,\infty ),j = 1, \cdots ,m$ . Here $ {\mathbf{\Lambda }}$ denotes the Besov spaces in Taibleson's notation. If $ m = 1$ then u has nontangential limits almost everywhere.


References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623-727. MR 23 #A2610. MR 0125307 (23:A2610)
  • [2] A. Benedek, A. Calderón and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365. MR #A3479. MR 0133653 (24:A3479)
  • [3] A. P. Calderón, A priori estimates for singular integral operators, Pseudo-Differential Operators (C.I.M.E., Stresa, 1968), Edizioni Cremonese, Rome, 1969, pp. 85-141. MR 41 #872.
  • [4] J. R. Hattemer, Boundary behavior of temperatures. I, Studia Math. 25 (1964/65), 111-155. MR 31 #6064. MR 0181838 (31:6064)
  • [5] R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc. 132 (1968), 307-322. MR 37 #1634. MR 0226044 (37:1634)
  • [6] J. Peetre, Sur les espaces de Besov, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A281-A283. MR 36 #1971. MR 0218887 (36:1971)
  • [7] J. C. Polking, Boundary values for parabolic systems of partial differential equations, Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1967, pp. 243-274. MR 0378000 (51:14169)
  • [8] R. T. Seeley, Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781-809. MR 35 #810. MR 0209915 (35:810)
  • [9] -, Iopics in pseudo-differential operators, Pseudo-Differential Operators (C.I.M.E., Stresa, 1968), Edizioni Cremonese, Rome, 1969, pp. 167-305. MR 41 #3973. MR 0259335 (41:3973)
  • [10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)
  • [11] -, The characterization of functions arising as potentials. II, Bull. Amer. Math. Soc. 68 (1962), 577-582. MR 26 #547. MR 0142980 (26:547)
  • [12] M. H. Taibleson, On the theory of Lipschitz spaces of distrubutions on Euclidean n-space. I, II, J. Math. Mech. 13 (1964), 407-479; ibid. 14 (1965), 821-839. MR 29 #462; MR 31 #5087.
  • [13] K.-O. Widman, On the boundary behavior of solutions to a class of elliptic partial differential equations, Ark. Mat. 6 (1967), 485-533. MR 36 #2949. MR 0219875 (36:2949)
  • [14] A. Zygmund, Trigonometrical series, Vols. I, II, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0236587 (38:4882)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J67

Retrieve articles in all journals with MSC: 35J67


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0320525-5
Keywords: Elliptic boundary value problem, $ {H^p}$ condition, Dirichlet problem, Poisson kernel, Fatou theorem, Besov space, pseudodifferential operators
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society