Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Algebraic results on representations of semisimple Lie groups


Author: J. Lepowsky
Journal: Trans. Amer. Math. Soc. 176 (1973), 1-44
MSC: Primary 22E45
DOI: https://doi.org/10.1090/S0002-9947-1973-0346093-X
MathSciNet review: 0346093
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a noncompact connected real semisimple Lie group with finite center, and let K be a maximal compact subgroup of G. Let $ \mathfrak{g}$ and $ \mathfrak{k}$ denote the respective complexified Lie algebras. Then every irreducible representation $ \pi $ of $ \mathfrak{g}$ which is semisimple under $ \mathfrak{k}$ and whose irreducible $ \mathfrak{k}$-components integrate to finite-dimensional irreducible representations of K is shown to be equivalent to a subquotient of a representation of $ \mathfrak{g}$ belonging to the infinitesimal nonunitary principal series. It follows that $ \pi $ integrates to a continuous irreducible Hilbert space representation of G, and the best possible estimate for the multiplicity of any finite-dimensional irreducible representation of $ \mathfrak{k}$ in $ \pi $ is determined. These results generalize similar results of Harish-Chandra, R. Godement and J. Dixmier. The representations of $ \mathfrak{g}$ in the infinitesimal nonunitary principal series, as well as certain more general representations of $ \mathfrak{g}$ on which the center of the universal enveloping algebra of $ \mathfrak{g}$ acts as scalars, are shown to have (finite) composition series. A general module-theoretic result is used to prove that the distribution character of an admissible Hilbert space representation of G determines the existence and equivalence class of an infinitesimal composition series for the representation, generalizing a theorem of N. Wallach. The composition series of Weylgroup-related members of the infinitesimal nonunitary principal series are shown to be equivalent. An expression is given for the infinitesimal spherical functions associated with the nonunitary principal series. In several instances, the proofs of the above results and related results yield simplifications as well as generalizations of certain results of Harish-Chandra.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algébres de Lie. Chap. 1: Algébres de Lie, Actualités Sci. Indust., no. 1285, Hermann, Paris, 1960. MR 24 #A2641.
  • [2] F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97-205. MR 18, 907. MR 0084713 (18:907i)
  • [3] J. Dixmier, a) Sur les représentations de certains groupes orthogonaux, C. R. Acad. Sci. Paris 250 (1960), 3263-3265. MR 22 #5901. MR 0115099 (22:5901)
  • [3b] -, Les $ {C^\ast}$-algébres et leurs représentations, 2ième éd., Cahiers Scientifiques, fasc. XXIX, Gauthier-Villars, Paris, 1969. MR 39 #7442. MR 0171173 (30:1404)
  • [3c] -, Idéaux primitifs dans l'algèbre enveloppante d'une algébre de Lie semi-simple complexe, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1628-A1630.
  • [4] S. G. Gindikin and F. I. Karpelevič, Plancherel measure for Riemann symmetric spaces of nonpositive curvature, Dokl. Akad. Nauk SSSR 145 (1962), 252-255 = Soviet Math. Dokl. 3 (1962), 962-965. MR 27 #240. MR 0150239 (27:240)
  • [5] R. Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496-556. MR 14, 620. MR 0052444 (14:620c)
  • [6] Harish-Chandra, a) On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900-915. MR 11, 77. MR 0030945 (11:77b)
  • [6b] -, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185-243. MR 15, 100. MR 0056610 (15:100f)
  • [6c] -, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26-65. MR 15, 398. MR 0058604 (15:398a)
  • [6d] -, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234-253. MR 16, 11. MR 0062747 (16:11e)
  • [6e] -, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485-528. MR 16, 111. MR 0063376 (16:111f)
  • [6f] -, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98-163. MR 18, 318. MR 0080875 (18:318c)
  • [6g] -, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241-310. MR 20 #925. MR 0094407 (20:925)
  • [6h] -, Some results on differential equations and their applications, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1763-1764. MR 31 #274. MR 0175998 (31:274)
  • [6i] -, Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457-508. MR 31 #4862d. MR 0180631 (31:4862d)
  • [7] S. Helgason, a) Differential geometry and symmetric spaces, Pure and Appl. Math., vol. 12, Academic Press, New York, 1962. MR 26 #2986. MR 0145455 (26:2986)
  • [7b] -, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1-154. MR 41 #8587. MR 0263988 (41:8587)
  • [8] A. W. Knapp and E. M. Stein, Interwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489-578. MR 0460543 (57:536)
  • [9] B. Kostant, On the existence and irreducibility of certain series of representations, Publication of 1971 Summer School in Math., edited by I.M. Gel'fand, Bolyai-Janós Math. Soc., Budapest (to appear). MR 0245725 (39:7031)
  • [10] R. A. Kunze and E. M. Stein, Uniformly bounded representations. III. Interwining operators for the principal series on semisimple groups, Amer. J. Math. 89 (1967), 385-442. MR 38 #269. MR 0231943 (38:269)
  • [11] J. Lepowsky and G. W. McCollum, On the determination of irreducible modules by restriction to a subalgebra, Trans. Amer. Math. Soc. 176 (1973), 45-57. MR 0323846 (48:2201)
  • [12] K. R. Parthasarathy, R. Ranga Rao and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383-429. MR 37 #1526. MR 0225936 (37:1526)
  • [13] C. Rader, Spherical functions on semisimple Lie groups, Ann. Sci.École Norm. Sup. (to appear).
  • [14] G. Schiffmann, Intégrales d'entrelacement et fonctions de Whittaker, Bull. Soc. Math. France 99 (1971), 3-72. MR 0311838 (47:400)
  • [15] N. Wallach, Cyclic vectors and irreducibility for principal series representations. II, Trans. Amer. Math. Soc. 164 (1972), 389-396. MR 0320233 (47:8772)
  • [16] D. P. Želobenko, Analogue of the Cartan-Weyl theory for infinite-dimensional representations of a semisimple complex Lie group, Dokl. Akad. Nauk SSSR 175 (1967), 24-27 = Soviet Math. Dokl. 8 (1967), 798-801. MR 35 #5553. MR 0214704 (35:5553)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45

Retrieve articles in all journals with MSC: 22E45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0346093-X
Keywords: Real semisimple Lie group, real semisimple Lie algebra, irreducible representation, subquotient, nonunitary principal series, multiplicity, composition series, distribution character, Weyl group, spherical function, universal enveloping algebra, admissible Hilbert space representation, infinitesimal equivalence, maximal compact subgroup, Iwasawa decomposition
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society