A nonlinear optimal control minimization technique

Author:
Russell D. Rupp

Journal:
Trans. Amer. Math. Soc. **178** (1973), 357-381

MSC:
Primary 49D99

MathSciNet review:
0322645

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Hestenes' method of multipliers is applied to a nonlinear optimal control problem. This requires that a differentially constrained problem be embedded in a family of unconstrained problems so as to preserve standard sufficiency criteria. Given an initial estimate of the Lagrange multipliers, a convergent sequence of arcs is generated. They are minimizing with respect to members of the above family, and their limit is the solution to the differentially constrained problem.

**[1]**Magnus R. Hestenes,*Applications of the theory of quadratic forms in Hilbert space to the calculus of variations*, Pacific J. Math.**1**(1951), 525–581. MR**0046590****[2]**Magnus R. Hestenes,*Calculus of variations and optimal control theory*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0203540****[3]**Magnus R. Hestenes,*An indirect sufficiency proof for the problem of Bolza in nonparametric form*, Trans. Amer. Math. Soc.**62**(1947), 509–535. MR**0023465**, 10.1090/S0002-9947-1947-0023465-9**[4]**Magnus R. Hestenes,*Multiplier and gradient methods*, J. Optimization Theory Appl.**4**(1969), 303–320. MR**0271809****[5]**Russell D. Rupp,*Approximation of the classical isoperimetric problem*, J. Optimization Theory Appl.**9**(1972), 251–264. MR**0303391****[6]**Russell D. Rupp,*A method for solving a quadratic optimal control problem*, J. Optimization Theory Appl.**9**(1972), 238–250. MR**0301597****[7]**Russell D. Rupp,*A new type of variational theory sufficiency theorem*, Pacific J. Math.**40**(1972), 415–444. MR**0333883****[8]**-,*A unified sufficiency theory in the calculus of variations*, Dissertation, University of California, Los Angeles, Calif., 1970.**[9]**Russell D. Rupp,*The Weierstrass excess function*, Pacific J. Math.**41**(1972), 529–536. MR**0312354**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
49D99

Retrieve articles in all journals with MSC: 49D99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0322645-8

Keywords:
Calculus of variations,
optimal control theory,
method of multipliers,
algorithm

Article copyright:
© Copyright 1973
American Mathematical Society