Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalized Dedekind eta-functions and generalized Dedekind sums


Author: Bruce C. Berndt
Journal: Trans. Amer. Math. Soc. 178 (1973), 495-508
MSC: Primary 10D05; Secondary 10H10
DOI: https://doi.org/10.1090/S0002-9947-1973-0371817-5
MathSciNet review: 0371817
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A transformation formula under modular substitutions is derived for a very large class of generalized Eisenstein series. The result also gives a transformation formula for generalized Dedekind eta-functions. Various types of Dedekind sums arise, and reciprocity laws are established.


References [Enhancements On Off] (What's this?)

  • [1] Milton Abramowitz and Irene A. Stegun (editors), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, 3rd printing with corrections, Nat. Bur. Standards Appl. Math. Series, 55, Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1965. MR 31 #1400. MR 0167642 (29:4914)
  • [2] Tom M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series, Duke Math. J. 17 (1950), 147-157. MR 11, 641. MR 0034781 (11:641g)
  • [3] -, A short proof of Shô Iseki's functional equation, Proc. Amer. Math. Soc. 15 (1964), 618-622. MR 29 #2233. MR 0164942 (29:2233)
  • [4] Leonard Carlitz, Some theorems on generalized Dedekind sums, Pacific J. Math. 3 (1953), 513-522. MR 15, 12. MR 0056019 (15:12b)
  • [5] -, Dedekind sums and Lambert series, Proc. Amer. Math. Soc. 5 (1954), 580-584. MR 16, 14. MR 0062764 (16:14d)
  • [6] U. Dieter, Das Verhalten der Kleinschen Funktionen $ \log \;{\sigma _{g,h}}({\omega _1},{\omega _2})$ gegenüber Modultransformationen und verallgemeinerte Dedekindsche Summen, J. Reine Angew. Math. 201 (1959), 37-70. MR 21 #3397. MR 0104644 (21:3397)
  • [7] E. Grosswald, Dedekind-Rademacher sums and their reciprocity formula, J. Reine Angew. Math. 251 (1971), 161-173. MR 45 #1849. MR 0292767 (45:1849)
  • [8] E. Hecke, Bestimmung der Klassenzahl einer neuen Reihe von algebraischen Zahlkörpern, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1921, 1-23.
  • [9] Shô Iseki, The trans formation formula for the Dedekind modular function and related functional equations, Duke Math. J. 24 (1957), 653-662. MR 19, 943. MR 0091301 (19:943a)
  • [10] F. Klein, Über die elliptischen Normalkurven der n-ten Ordnung und zugehörige Modulfunctionen der n-ten Stufe, Abh. Sächs. Kgl. Ges. Wiss. Leipzig 13 (1885), 337-400.
  • [11] Joseph Lehner, A partition function connected with the modulus five, Duke Math. J. 8 (1941), 631-655. MR 3, 166. MR 0005523 (3:166b)
  • [12] Joseph Lewittes, Analytic continuation of Eisenstein series, Trans. Amer. Math. Soc. 177 (1972), 469-490. MR 0306148 (46:5275)
  • [13] John Livingood, A partition function with the prime modulus $ P > 3$, Amer. J. Math. 67 (1945), 194-208. MR 6, 259. MR 0012101 (6:259b)
  • [14] C. Meyer, Die Berechnung der Klassenzahl Abelscher Körper über quadratischen Zahlkörpern, Akademie-Verlag, Berlin, 1957. MR 19, 531. MR 0088510 (19:531f)
  • [15] -, Über einige Anwendungen Dedekindscher Summen, J. Reine Angew. Math. 198 (1957), 143-203. MR 21 #3396. MR 0104643 (21:3396)
  • [16] Hans Rademacher, Some remarks on certain generalized Dedekind sums, Acta Arith. 9 (1964), 97-105. MR 29 #1172. MR 0163873 (29:1172)
  • [17] B. Schoeneberg, Zur Theorie der verallgemeinerten Dedekindschen Modulfunktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1969, 119-128. MR 42 #7595. MR 0272714 (42:7595)
  • [18] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951. MR 13, 741. MR 0046485 (13:741c)
  • [19] E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th. ed., Cambridge Univ. Press, Cambridge, 1962. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10D05, 10H10

Retrieve articles in all journals with MSC: 10D05, 10H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0371817-5
Keywords: Eisenstein series, Dedekind eta-function, generalized Dedekind eta-function, Dedekind sum, generalized Dedekind sum, Bernoulli numbers and polynomials, reciprocity law, Lambert series, modular transformation
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society