Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotic behavior of solutions of linear stochastic differential systems


Authors: Avner Friedman and Mark A. Pinsky
Journal: Trans. Amer. Math. Soc. 181 (1973), 1-22
MSC: Primary 60H10
DOI: https://doi.org/10.1090/S0002-9947-1973-0319268-3
MathSciNet review: 0319268
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Following Kasminski, we investigate asymptotic behavior of solutions of linear time-independent Itô equations. We first give a sufficient condition for asymptotic stability of the zero solution. Then in dimension 2 we determine conditions for spiraling at a linear rate. Finally we give applications to the Cauchy problem for the associated parabolic equation by the use of a tauberian theorem.


References [Enhancements On Off] (What's this?)

  • [1] M. I. Freĭdlin, The exterior Dirichlet problem for the class of bounded functions, Teor. Verojatnost. i Primenen. 11 (1966), 463-471 = Theor. Probability Appl. 11 (1966), 407-414. MR 34 #1694. MR 0201812 (34:1694)
  • [2] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 31 #6062. MR 0181836 (31:6062)
  • [3] -, Limit behavior of solutions of stochastic differential equations, Trans. Amer. Math. Soc. 170 (1972), 359-384. MR 0378118 (51:14287)
  • [4] I. I. Gihman and A. V. Skorohod, Stochastic differential equations, ``Naukova Dumka", Kiev, 1968. (Russian) MR 41 #7777. MR 0263172 (41:7777)
  • [5] R. Z. Has minskiĭ, Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems, Teor. Verojatnost. i Primenen. 12 (1967), 167-172 = Theor. Probability Appl. 12 (1967), 144-147. MR 35 #2345. MR 0211465 (35:2345)
  • [6] F. Kozin and S. Prodromou, Necessary and sufficient conditions for almost sure sample stability of linear Ito equations, SIAM J. Appl. Math. 21 (1971), 413-424. MR 0305479 (46:4609)
  • [7] H. P. McKean, Jr., Stochastic integrals, Probability and Math. Statist., no. 5, Academic Press, New York, 1969. MR 40 #947. MR 0247684 (40:947)
  • [8] H. R. Pitt, Tauberian theorems, Tata Institute of Fundamental Research Monographs on Math. and Physics, no. 2, Oxford Univ. Press, London, 1958. MR 21 #5109. MR 0106376 (21:5109)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60H10

Retrieve articles in all journals with MSC: 60H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0319268-3
Keywords: Stochastic differential equation, diffusion process, asymptotic stability, spiraling solutions
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society