Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Wreath products and representations of degree one or two


Authors: J. M. Bateman, Richard E. Phillips and L. M. Sonneborn
Journal: Trans. Amer. Math. Soc. 181 (1973), 143-153
MSC: Primary 20F25
DOI: https://doi.org/10.1090/S0002-9947-1973-0320158-0
MathSciNet review: 0320158
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: $ {\mathcal{S}_2}$ denotes all groups $ G$ that possess an ascending invariant series whose factors are one- or two-generated Abelian groups. We are interested in the ptoblem (1): For which nontrivial groups $ A$ and $ B$ is $ A$ wr $ B$ in $ {\mathcal{S}_2}?$ (1) has been completely solved by D. Parker in the case where $ A$ and $ B$ are finite of odd order. Parker's results are partially extended here to cover groups of even order. Our answer to (1) is complete in the case where $ A$ is a finite $ 2$-group: If $ A$ is a finite $ 2$-group, $ A$ wr $ B$ is in $ {\mathcal{S}_2}$ iff $ B$ is finite and $ B/{O_2}(B)$ is isomorphic to a subgroup of a dihedral group of an elementary $ 3$-group. If $ A$ is not a $ 2$-group, we offer only necessary conditions on $ B$. Problem (1) is closely related to Problem (2): If $ F$ is a prime field or the integers, which finite groups $ B$ have all their irreducible representations over $ F$ of degrees one or two? It is shown that all finite $ B$ which satisfy (2) are $ {\mathcal{S}_2}$ groups; in particular all such $ B$ are solvable.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Bateman, On the solvability of unit groups of algebras, Trans. Amer. Math. Soc. 157 (1971), 73-86. MR 43 #2118. MR 0276371 (43:2118)
  • [2] Roger Carter and Paul Fong, The Sylow $ 2$-subgroups of the finite classical groups, J. Algebra 1 (1964), 139-151. MR 29 #3548. MR 0166271 (29:3548)
  • [3] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519. MR 0144979 (26:2519)
  • [4] John R. Durbin, Finite supersolvable wreath products, Proc. Amer. Math. Soc. 17 (1966), 215-218. MR 32 #4192. MR 0186734 (32:4192)
  • [5] K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. (3) 7 (1957), 29-62. MR 19, 386. MR 0087652 (19:386a)
  • [6] B. Huppert, Endliche Gruppen. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967. MR 37 #302. MR 0224703 (37:302)
  • [7] Hanna Neumann, Varieties of groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin, 1967. MR 35 #6734. MR 0215899 (35:6734)
  • [8] Donald B. Parker, Wreath products and formations of groups, Proc. Amer. Math. Soc. 24 (1970), 404-408. MR 40 #5739. MR 0252519 (40:5739)
  • [9] W. R. Scott and L. M. Sonneborn, Supersolvable wreath products, Math. Z. 92 (1966), 154-163. MR 33 #178. MR 0191951 (33:178)
  • [10] D. Suprenenko, Soluble and nilpotent linear groups, Ministerstvo Vysš. Obražovanija SSSR, Izdat. Belgosuniv. im. V. I. Lenina, Minsk, 1958; English transl., Transl. Math. Monographs, vol. 9, Amer. Math. Soc., Providence, R. I., 1963. MR 27 #4861a, b. MR 0154918 (27:4861b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20F25

Retrieve articles in all journals with MSC: 20F25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0320158-0
Keywords: Supersolvable, solvable wreath product, group ring, modular representation, integral representation
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society