Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Two-norm spaces and decompositions of Banach spaces. II


Authors: P. K. Subramanian and S. Rothman
Journal: Trans. Amer. Math. Soc. 181 (1973), 313-327
MSC: Primary 46B15
DOI: https://doi.org/10.1090/S0002-9947-1973-0320719-9
MathSciNet review: 0320719
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a Banach space, $ Y$ a closed subspace of $ {X^\ast }$. One says $ X$ is $ Y$-reflexive if the canonical imbedding of $ X$ onto $ {Y^\ast }$ is an isometry and $ Y$-pseudo reflexive if it is a linear isomorphism onto. If $ X$ has a basis and $ Y$ is the closed linear span of the corresponding biorthogonal functionals, necessary and sufficient conditions for $ X$ to be $ Y$-pseudo reflexive are due to I. Singer. To every $ B$-space $ X$ with a decomposition we associate a canonical two-norm space $ {X_s}$ and show that the properties of $ {X_s}$, in particular its $ \gamma $-completion, may be exploited to give different proofs of Singer's results and, in particular, to extend them to $ B$-spaces with decompositions. This technique is then applied to a study of direct sum of $ B$-spaces with respect to a BK space. Necessary and sufficient conditions for such a space to be reflexive are obtained.


References [Enhancements On Off] (What's this?)

  • [1] L. Alaoglu, Weak topologies of normed linear spaces, Ann. of Math. (2) 41 (1940), 252-267. MR 1, 241. MR 0001455 (1:241e)
  • [2] A. Alexiewicz and Z. Semadeni, The two-norm spaces and their conjugate spaces, Studia Math. 18 (1959), 275-293. MR 22 #5878. MR 0115075 (22:5878)
  • [3] -, Some properties of two-norm spaces and a characterization of reflexivity of Banach spaces, Studia Math. 19 (1960), 115-132. MR 22 #8310. MR 0117531 (22:8310)
  • [4] G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; MR 40 #1750.
  • [5] W. Orlicz and V. Pták, Some remarks on Saks spaces, Studia Math. 16 (1957), 56-68. MR 20 #1198. MR 0094686 (20:1198)
  • [6] S. Rothman, Banach spaces via two-norm spaces, Dissertation, University of Wisconsin, Milwaukee, Wis., 1970.
  • [7] W. H. Ruckle, The infinite sum of closed subspaces of an $ F$-space, Duke Math. J. 31 (1964), 543-554. MR 29 #3862. MR 0166589 (29:3862)
  • [8] B. L. Sanders, Decompositions and reflexivity in Banach spaces, Proc. Amer. Math. Soc. 16 (1965), 204-208. MR 30 #2318. MR 0172092 (30:2318)
  • [9] I. Singer, On Banach spaces reflexive with respect to a linear subspace of their conjugate space. III, Rev. Math. Pures Appl. 8 (1963), 139-150. MR 27 #2831. MR 0152859 (27:2831)
  • [10] P. K. Subramanian, Two-norm spaces and decompositions of Banach spaces. I, Studia Math. 33 (1972), 179-194. MR 0315414 (47:3963)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B15

Retrieve articles in all journals with MSC: 46B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0320719-9
Keywords: Schauder basis, Schauder decomposition, reflexive, pseudo reflexive, two-norm space, spaces with mixed topology
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society