Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Overrings of commutative rings. III. Normal pairs


Author: Edward D. Davis
Journal: Trans. Amer. Math. Soc. 182 (1973), 175-185
MSC: Primary 13B20
DOI: https://doi.org/10.1090/S0002-9947-1973-0325599-3
MathSciNet review: 0325599
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A pair of integral domains (A, B) is a normal (resp., QR-) pair provided that A is a subring of B and all intermediate rings are normal in B (resp., rings of quotients of A). The special case of B the field of fractions of A (e.g., Prüfer domains and Dedekind domains with torsion class group) has been studied in detail. It is shown that any domain A possesses a unique overring B maximal with respect to forming a normal (resp., QR-) pair with A. An explicit description of this overring and all the intermediate rings in terms of localizations A is obtained, and further details are provided in the presence of a noetherian-like condition on A. In addition, the ``overring'' characterizations of Prüfer domains are extended to ``intermediate ring'' characterizations of normal pairs.


References [Enhancements On Off] (What's this?)

  • [1] E. Davis, Overrings of commutative rings. II. Integrally closed overrings, Trans. Amer. Math. Soc. 110 (1964), 196-212. MR 28 #111. MR 0156868 (28:111)
  • [2] -, Integrally closed pairs, Conference on Commutative Algebra, Lecture Notes in Math., no. 311, Springer-Verlag, Berlin and New York, 1973, pp. 103-106. MR 0335490 (49:271)
  • [3] -, A remark on Prüfer rings, Proc. Amer. Math. Soc. 20 (1969), 235-237. MR 38 #1086. MR 0232763 (38:1086)
  • [4] -, Rings of algebraic numbers and functions, Math. Nachr. 29 (1965), 1-7. MR 31 #3411. MR 0179160 (31:3411)
  • [5] R. Gilmer, Prüfer-like conditions on the set of overrings of an integral domain, Conference on Commutative Algebra, Lecture Notes in Math., no. 311, Springer-Verlag, Berlin and New York, 1973, pp. 90-102. MR 0340245 (49:5000)
  • [6] R. Gilmer and J. Ohm, Integral domains with quotient overrings, Math. Ann. 153 (1964), 97-103. MR 28 #3051. MR 0159835 (28:3051)
  • [7] O. Goldman, On a special class of Dedekind domains, Topology 3 (1964), suppl. 1, 113-118. MR 28 #3052. MR 0159836 (28:3052)
  • [8] H. Grell, Grundlagen zur Strukturtheorie der Integritätsbereiche mit eingeschränkter Minimalbedingung, Festschrift, Humboldt-Univ. Berlin Band II Berlin 1960, 15-36.
  • [9] W. Heinzer, Quotient overrings of an integral domain, Mathematika 17 (1970), 139-148. MR 42 #244. MR 0265334 (42:244)
  • [10] W. Krull, Einbettungsfreie, fast-Noethersche Ringe und ihre Oberringe, Math. Nachr. 21 (1960), 319-338. MR 24 #A142. MR 0130276 (24:A142)
  • [11] R. L. Pendleton, A characterication of Q-domains, Bull. Amer. Math. Soc. 72 (1966), 499-500. MR 32 #7578. MR 0190164 (32:7578)
  • [12] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799. MR 31 #5880. MR 0181653 (31:5880)
  • [13] H. H. Storrer, A characterization of Prüfer domains, Canad. Math. Bull. 12 (1969), 809-812. MR 40 #7238. MR 0254025 (40:7238)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13B20

Retrieve articles in all journals with MSC: 13B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0325599-3
Keywords: Prüfer domains, Dedekind domains, valuation rings, rings of quotients, flat overrings, normal (or integrally closed)
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society