Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On factorized groups


Author: David C. Buchthal
Journal: Trans. Amer. Math. Soc. 183 (1973), 423-430
MSC: Primary 20D10
DOI: https://doi.org/10.1090/S0002-9947-1973-0338155-8
MathSciNet review: 0338155
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The effect on a finite group G by the imposition of the condition that G is factorized by each of its maximal subgroups has been studied by Huppert, Deskins, Kegel, and others. In this paper, the effect on G brought about by the condition that G is factorized by a normalizer of a Sylow p-subgroup for each $ p \in \pi (G)$ is studied. Through an extension of a classical theorem of Burnside, it is shown that certain results in the case where the factors are maximal subgroups continue to hold under the new conditions. Definite results are obtained in the case where the supplements of the Sylow normalizers are cyclic groups of prime power order or are abelian Hall subgroups of G.


References [Enhancements On Off] (What's this?)

  • [1] R. Baer, Classes of finite groups and their properties, Illinois J. Math. 1 (1957), 115-187. MR 19, 386. MR 0087655 (19:386d)
  • [2] J. Beidleman and A. Spencer, The normal index of maximal subgroups in finite groups, Illinois J. Math. 16 (1972), 95-101. MR 0294480 (45:3550)
  • [3] S. A. Čunihin, Subgroups of finite groups, Nauka i Tehnika, Minsk, 1964; English transl., Wolters-Noordhoff, Groningen, 1969. MR 35 #2957; 40 #1463. MR 0212082 (35:2957)
  • [4] W. E. Deskins, On maximal subgroups, Proc. Sympos. Pure Math., vol. 1, Amer. Math. Soc., Providence, R. I., 1959, pp. 100-104. MR 23 #A2462. MR 0125157 (23:A2462)
  • [5] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 29 #3538. MR 0166261 (29:3538)
  • [6] M. Hall, Jr., The theory of groups, Macmillan, New York, 1959. MR 21 #1996. MR 0103215 (21:1996)
  • [7] -, On the number of Sylow subgroups in a finite group, J. Algebra 7 (1967), 363-371. MR 36 #5211. MR 0222159 (36:5211)
  • [8] P. Hall, A characteristic property of solvable groups, J. London Math. Soc. 12 (1937), 188-200.
  • [9] B. Huppert, Endliche Gruppen. I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR 37 #302. MR 0224703 (37:302)
  • [10] N. Ito, On the factorizations of the linear fractional group $ LF(2,{p^n})$, Acta. Sci. Math. Szeged 15 (1953), 79-84. MR 15, 287. MR 0057885 (15:287d)
  • [11] Z. Janko, A new finite simple group with abelian Sylow 2-subgroups and its characterization, J. Algebra 3 (1966), 147-186. MR 33 #1359. MR 0193138 (33:1359)
  • [12] Z. Janko and J. G. Thompson, On a class of finite simple groups of Ree, J. Algebra 4 (1966), 274-292. MR 34 #1386. MR 0201504 (34:1386)
  • [13] O. H. Kegel, On Huppert's characterization of finite supersolvable groups, Proc. Internat. Conf. Theory of Groups (Canberra, 1965), Gordon and Breach, New York, 1967, pp. 209-215. MR 36 #274. MR 0217183 (36:274)
  • [14] L. R. Nyhoff, The influence on a finite group of the cofactors and subcofactors of its subgroups, Trans. Amer. Math. Soc. 154 (1971), 459-491. MR 44 #1720. MR 0284495 (44:1720)
  • [15] O. Ore, Contributions to the theory of groups of finite order, Duke Math. J. 5 (1938), 431-460. MR 1546136
  • [16] David Perin, Finite groups with nicely supplemented Sylow normalizer, Trans. Amer. Math. Soc. 183 (1973), 433-437. MR 0393219 (52:14029)
  • [17] J. F. Ritt, On algebraic functions which can be expressed in terms of radicals, Trans. Amer. Math. Soc. 24 (1923), 21-30. MR 1501211
  • [18] E. Schenkman, Group theory, Van Nostrand, Princeton, N. J., 1965. MR 33 #5702. MR 0197537 (33:5702)
  • [19] W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 29 #4785. MR 0167513 (29:4785)
  • [20] J. Szep and L. Rédei, On factorisable groups, Acta Univ. Szeged. Sect. Sci. Math. 13 (1950), 235-238. MR 14, 13, 1277. MR 0048433 (14:13d)
  • [21] H. N. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89. MR 33 #5752. MR 0197587 (33:5752)
  • [22] J. H. Walter, Finite groups with abelian Sylow 2-subgroups of order 8, Invent. Math. 2 (1967), 332-376. MR 36 #1531. MR 0218445 (36:1531)
  • [23] -, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. (2) 89 (1969), 405-514. MR 40 #2749. MR 0249504 (40:2749)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20D10

Retrieve articles in all journals with MSC: 20D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0338155-8
Keywords: Factorized group, Sylow subgroup, Sylow normalizer, cyclic supplements, abelian Hall supplements, solvable groups, supersolvable groups, Walter's theorem, Hall $ \pi $-subgroup
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society