Hull subordination and extremal problems for starlike and spirallike mappings

Author:
Thomas H. MacGregor

Journal:
Trans. Amer. Math. Soc. **183** (1973), 499-510

MSC:
Primary 30A32

MathSciNet review:
0338339

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a compact subset of the family of functions analytic in , and let be a continuous linear operator of order zero on . We show that if the extreme points of the closed convex hull of is the set , then is hull subordinate to in . This generalizes results of R. M. Robinson corresponding to families of functions that are subordinate to or to . Families to which this theorem applies are discussed and we identify each such operator with a suitable sequence of complex numbers.

Suppose that is a nonconstant entire function and that . We show that the maximum of over the class of starlike functions of order *a* is attained only by the functions . A similar result is obtained for spirallike mappings. Both results generalize a theorem of G. M. Golusin corresponding to the family of starlike mappings.

**[1]**D. A. Brannan, J. G. Clunie, and W. E. Kirwan,*On the coefficient problem for functions of bounded boundary rotation*, Ann. Acad. Sci. Fenn. Ser. A I**523**(1973), 18. MR**0338343****[2]**L. Brickman, T. H. MacGregor, and D. R. Wilken,*Convex hulls of some classical families of univalent functions*, Trans. Amer. Math. Soc.**156**(1971), 91–107. MR**0274734**, 10.1090/S0002-9947-1971-0274734-2**[3]**L. Brickman, D. J. Hallenbeck, T. H. Macgregor, and D. R. Wilken,*Convex hulls and extreme points of families of starlike and convex mappings*, Trans. Amer. Math. Soc.**185**(1973), 413–428 (1974). MR**0338337**, 10.1090/S0002-9947-1973-0338337-5**[4]**Nelson Dunford and Jacob T. Schwartz,*Linear Operators. I. General Theory*, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958. MR**0117523****[5]**G. M. Goluzin,*On a variational method in the theory of analytic functions*, Amer. Math. Soc. Transl. (2)**18**(1961), 1–14. MR**0124491****[6]**D. J. Hallenbeck,*Convex hulls and extreme points of some families of univalent functions*, Ph.D. Dissertation, State University of New York, Albany, N. Y., 1972.**[7]**D. J. Hallenbeck and T. H. MacGregor,*Subordination and extreme-point theory*, Pacific J. Math.**50**(1974), 455–468. MR**0361035****[8]**D. J. Hallenbeck,*Convex hulls and extreme points of some families of univalent functions*, Trans. Amer. Math. Soc.**192**(1974), 285–292. MR**0338338**, 10.1090/S0002-9947-1974-0338338-8**[9]**I. S. Jack,*Functions starlike and convex of order 𝛼*, J. London Math. Soc. (2)**3**(1971), 469–474. MR**0281897****[10]**W. E. Kirwan,*A note on extremal problems for certain classes of analytic functions*, Proc. Amer. Math. Soc.**17**(1966), 1028–1030. MR**0202995**, 10.1090/S0002-9939-1966-0202995-8**[11]**Zeev Nehari,*Conformal mapping*, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952. MR**0045823****[12]**Malcolm I. S. Robertson,*On the theory of univalent functions*, Ann. of Math. (2)**37**(1936), no. 2, 374–408. MR**1503286**, 10.2307/1968451**[13]**M. S. Robertson,*An extremal problem for functions with positive real part*, Michigan Math. J.**11**(1964), 327–335. MR**0170002****[14]**Raphael M. Robinson,*Univalent majorants*, Trans. Amer. Math. Soc.**61**(1947), 1–35. MR**0019114**, 10.1090/S0002-9947-1947-0019114-6**[15]**L. Špaček,*Contribution à la théorie des fonctions univalentes*, Časopis Pěst. Mat.**62**(1932), 12-19.**[16]**Erich Strohhäcker,*Beiträge zur Theorie der schlichten Funktionen*, Math. Z.**37**(1933), no. 1, 356–380 (German). MR**1545400**, 10.1007/BF01474580

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30A32

Retrieve articles in all journals with MSC: 30A32

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1973-0338339-9

Keywords:
Subordination,
hull subordination,
continuous linear operator,
functions with positive real part,
Herglotz representation formula,
extreme points,
closed convex hull,
univalent functions,
starlike mapping,
starlike functions of order *a*,
spirallike functions,
extremal problems,
Kreĭn-Milman theorem,
probability measure,
convex mapping,
convex functions of order *a*,
continuous linear functional

Article copyright:
© Copyright 1973
American Mathematical Society