Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Convolution equations and harmonic analysis in spaces of entire functions


Author: D. G. Dickson
Journal: Trans. Amer. Math. Soc. 184 (1973), 373-385
MSC: Primary 30A98
DOI: https://doi.org/10.1090/S0002-9947-1973-0374449-8
MathSciNet review: 0374449
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If H is the topological space of functions analytic in the simply connected open set $ \Omega $ of the plane with the topology of compact convergence, its dual may be identified with the space E of functions of exponential type whose Borel transforms have their singularities in $ \Omega $. For f in H and $ \phi $ in E, $ (f \ast \phi )(z) \equiv \left\langle {f,{\phi _z}} \right\rangle $ where $ {\phi _z}$ is the z-translate of $ \phi $. If $ f{\nequiv}0$ in any component of $ \Omega ,f \ast \phi = 0$ if and only if $ \phi $ is a finite linear combination of monomial-exponentials $ {z^p} \exp (\omega z)$ where $ \omega $ is a zero of f in $ \Omega $ of order at least $ p + 1$. For such f and $ \psi $ in E, $ f \ast \phi = \psi $ is solved explicitly for $ \phi $. If E is assigned its strong dual topology and $ \tau (\phi )$ is the closed linear span in E of the translates of $ \phi $, then $ \tau (\phi )$ is a finite direct sum of closed subspaces spanned by monomial-exponentials. Each closed translation invariant subspace of E is the kernel of a convolution mapping $ \phi \to f \ast \phi $; there is a one-to-one correspondence between such subspaces and the closed ideals of H with the correspondence that of annihilators.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Boas, Entire functions, Academic Press, New York, 1954. MR 16, 914. MR 0068627 (16:914f)
  • [2] D. G. Dickson, Analytic mean periodic functions, Trans. Amer. Math. Soc. 110 (1964), 361-374. MR 29 #4880. MR 0167608 (29:4880)
  • [3] D. G. Dickson, Infinite order differential equations, Proc. Amer. Math. Soc. 15 (1964), 638-641. MR 31 #457. MR 0176182 (31:457)
  • [4] J. P. Kahane, Lectures on mean periodic functions, Tata Institute of Fundamental Research, Bombay, 1958.
  • [5] G. Köthe, Dualität in der Funktionentheorie, J. Reine Angew. Math. 191 (1953), 30-49. MR 15, 132. MR 0056824 (15:132g)
  • [6] -, Topologische lineare Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960. MR 24 #A411. MR 0130551 (24:A411)
  • [7] H. Muggli, Differentialgleichungen unendlich hoher Ordnung mit konstanten Koeffizienten, Comment. Math. Helv. 11 (1938), 151-179. MR 1509596
  • [8] L. A. Rubel and B. A. Taylor, Functional analysis proofs of some theorems in function theory, Amer. Math. Monthly 76 (1969), 483-489. MR 40 #384. MR 0247115 (40:384)
  • [9] L. Schwartz, Theorie géenérale des fonctions moyenne-périodiques, Ann. of Math. (2) 48 (1947), 857-929. MR 9, 428. MR 0023948 (9:428c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A98

Retrieve articles in all journals with MSC: 30A98


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0374449-8
Keywords: Convolution, entire functions of exponential type, harmonic analysis
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society