Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Homology of the classical groups over the Dyer-Lashof algebra


Author: Stanley O. Kochman
Journal: Trans. Amer. Math. Soc. 185 (1973), 83-136
MSC: Primary 55F45; Secondary 55G99
MathSciNet review: 0331386
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The action of the Dyer-Lashof algebra is computed on the homology of the infinite classical groups (including Spin), their classifying spaces, their homogeneous spaces, Im J, B Im J and BBSO. Some applications are given while applications by other authors appear elsewhere.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 1–138. MR 0251716
  • [2] José Adem, The relations on Steenrod powers of cohomology classes. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 191–238. MR 0085502
  • [3] Tatsuji Kudo and Shôrô Araki, Topology of 𝐻_{𝑛}-spaces and 𝐻-squaring operations, Mem. Fac. Sci. Kyūsyū Univ. Ser. A. 10 (1956), 85–120. MR 0087948
  • [4] Séminaire Henri Cartan 12ième année: 1959/60. Périodicité des groupes d'homotopie stables des groupes classiques, d'après Bott. Deux fasc., 2ième éd., École Normale Supérieure, Secrétariat mathématique, Paris, 1961. MR 28 #1092.
  • [5] Robert R. Clough, On the integral cohomology groups of the classifying space for 𝐵𝑆𝑂., Michigan Math. J. 16 (1969), 309–314. MR 0250333
  • [6] Tammo tom Dieck, Steenrod-Operationen in Kobordismen-Theorien, Math. Z. 107 (1968), 380–401 (German). MR 0244989
  • [7] A. Dold, Erzeugende der Tomschen Algebra $ \mathfrak{N}$, Math. Z. 65 (1956), 23-35. MR 18, 60.
  • [8] E. Dyer and R. Lashof, A topological proof of the Bott periodicity theorems, Ann. Mat. Pura Appl. (4) 54 (1961), 231–254. MR 0153018
  • [9] Eldon Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35–88. MR 0141112
  • [10] M. Herrero, Homology operations on $ {H_ \ast }(BU \times Z)$ and $ {H_\ast}(BO \times Z)$ related to the tensor product of vector bundles, Ph.D. Thesis, University of Chicago, Chicago, Ill., 1972.
  • [11] Stanley O. Kochman, The homology of the classical groups over the Dyer-Lashof algebra, Bull. Amer. Math. Soc. 77 (1971), 142–147. MR 0314049, 10.1090/S0002-9904-1971-12637-X
  • [12] Stanley O. Kochman, The homology of the classical groups over the Dyer-Lashof algebra, Bull. Amer. Math. Soc. 77 (1971), 142–147. MR 0314049, 10.1090/S0002-9904-1971-12637-X
  • [13] Arunas Liulevicius, On characteristic classes, Lectures given at the Nordic Summer School in Mathematics (June 16th-July 6th, vol. 1968, Matematisk Institut, Aarhus Universitet, Aarhus, 1968. MR 0256409
  • [14] I. Madsen, On the action of the Dyer-Lashof algebra on $ {H_\ast}(G)$ and $ {H_\ast}(G/{\text{Top}})$, Ph.D. Thesis, University of Chicago, Chicago, Ill., 1970.
  • [15] J. Peter May, Categories of spectra and infinite loop spaces, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 448–479. MR 0248823
  • [16] J. Peter May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 153–231. MR 0281196
  • [17] -, The geometry of iterated loop spaces, (to appear).
  • [18] -, The homology of $ {E_\infty }$-spaces and infinite loop spaces, Springer, Berlin, 1972.
  • [19] J. Peter May, Homology operations on infinite loop spaces, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 171–185. MR 0319195
  • [20] J. Milnor, On characteristic classes for spherical fibre spaces, Comment. Math. Helv. 43 (1968), 51–77. MR 0226638
  • [21] Goro Nishida, Cohomology operations in iterated loop spaces, Proc. Japan Acad. 44 (1968), 104–109. MR 0240811
  • [22] James D. Stasheff, The image of 𝐽 as a space 𝑚𝑜𝑑 𝑝, Conf. on Algebraic Topology (Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968) Univ. of Illinois at Chicago Circle, Chicago, Ill., 1969, pp. 276–287. MR 0258032
  • [23] James D. Stasheff, Torsion in 𝐵𝐵𝑆𝑂, Pacific J. Math. 28 (1969), 677–680. MR 0253365
  • [24] N. E. Steenrod, Cohomology operations, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. MR 0145525
  • [25] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 0061823
  • [26] A. Tsuchiya, Homology operations of ring spectrum of $ {H^\infty }$ type and their applications (mimeographed notes).
  • [27] R. Van de Velde, A Hopf algebra of partitions and some applications, Ph.D. Thesis, University of Chicago, Chicago, Ill., 1967.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55F45, 55G99

Retrieve articles in all journals with MSC: 55F45, 55G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0331386-2
Keywords: Classical group, classifying space, homogeneous space, image of J, $ {E_\infty }$-operad, Bott periodicity, suspension map and Nishida relations
Article copyright: © Copyright 1973 American Mathematical Society