Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homology of the classical groups over the Dyer-Lashof algebra


Author: Stanley O. Kochman
Journal: Trans. Amer. Math. Soc. 185 (1973), 83-136
MSC: Primary 55F45; Secondary 55G99
DOI: https://doi.org/10.1090/S0002-9947-1973-0331386-2
MathSciNet review: 0331386
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The action of the Dyer-Lashof algebra is computed on the homology of the infinite classical groups (including Spin), their classifying spaces, their homogeneous spaces, Im J, B Im J and BBSO. Some applications are given while applications by other authors appear elsewhere.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Lectures on generalized cohomology; Category Theory, Homology Theory and their Applications. III (Battelle Institute Conference, Seattle, Wash., 1968), vol. 3, Springer, Berlin, 1969, pp. 1-138. MR 40 #4943. MR 0251716 (40:4943)
  • [2] J. Adem, The relations on Steenrod powers of cohomology classes; Algebraic Geometry and Topology (A Symposium in Honor of S. Lefschetz), Princeton Univ. Press, Princeton, N. J., 1957, pp. 191-238. MR 19, 50. MR 0085502 (19:50c)
  • [3] S. Araki and T. Kudo, Topology of $ {H_n}$-spaces and H-squaring operations, Mem. Fac. Sci. Kyushu Univ. Ser. A 10 (1956), 85-120. MR 0087948 (19:442b)
  • [4] Séminaire Henri Cartan 12ième année: 1959/60. Périodicité des groupes d'homotopie stables des groupes classiques, d'après Bott. Deux fasc., 2ième éd., École Normale Supérieure, Secrétariat mathématique, Paris, 1961. MR 28 #1092.
  • [5] R. R. Clough, On the integral cohomology groups of the classifying space for BSO, Michigan Math. J. 16 (1969), 309-314. MR 40 #3572. MR 0250333 (40:3572)
  • [6] T. tom Dieck, Steenrod-Operationen in Kobordismen Theorien, Math. Z. 107 (1968), 380-401. MR 39 #6302. MR 0244989 (39:6302)
  • [7] A. Dold, Erzeugende der Tomschen Algebra $ \mathfrak{N}$, Math. Z. 65 (1956), 23-35. MR 18, 60.
  • [8] E. Dyer and R. K. Lashof, A topological proof of the Bott periodicity theorems, Ann. Mat. Pura Appl. (4) 54 (1961), 231-254. MR 27 #2987. MR 0153018 (27:2987)
  • [9] -, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88. MR 25 #4523. MR 0141112 (25:4523)
  • [10] M. Herrero, Homology operations on $ {H_ \ast }(BU \times Z)$ and $ {H_\ast}(BO \times Z)$ related to the tensor product of vector bundles, Ph.D. Thesis, University of Chicago, Chicago, Ill., 1972.
  • [11] S. Kochman, The homology of the classical groups over the Dyer-Lashof algebra, a Hirsch formula in homology and applications, Ph.D. Thesis, University of Chicago, Chicago, Ill., 1970. MR 0314049 (47:2601)
  • [12] -, The homology of the classical groups over the Dyer-Lashof algebra, Bull. Amer. Math. Soc. 77 (1971), 142-147. MR 0314049 (47:2601)
  • [13] A. Liulevicius, Characteristic classes and cobordism, I, Lecture Notes, Aarhus Univ., Aarhus, Denmark, 1967. MR 0256409 (41:1065)
  • [14] I. Madsen, On the action of the Dyer-Lashof algebra on $ {H_\ast}(G)$ and $ {H_\ast}(G/{\text{Top}})$, Ph.D. Thesis, University of Chicago, Chicago, Ill., 1970.
  • [15] J. P. May, Categories of spectra and infinite loop spaces, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968), vol. 3, Springer, Berlin, 1969, pp. 448-479. MR 40 #2073. MR 0248823 (40:2073)
  • [16] -, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod's Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Math., vol. 168, Springer-Verlag, Berlin, 1970, pp. 153-231. MR 43 #6915. MR 0281196 (43:6915)
  • [17] -, The geometry of iterated loop spaces, (to appear).
  • [18] -, The homology of $ {E_\infty }$-spaces and infinite loop spaces, Springer, Berlin, 1972.
  • [19] -, Homology operations on infinite loop spaces, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, R. I., 1971, pp. 171-185. MR 0319195 (47:7740)
  • [20] J. Milnor, On characteristic classes for spherical fibre spaces, Comment. Math. Helv. 43 (1968), 51-77. MR 37 #2227. MR 0226638 (37:2227)
  • [21] G. Nishida, Cohomology operations in iterated loop spaces, Proc. Japan Acad. 44 (1968), 104-109. MR 39 #2156. MR 0240811 (39:2156)
  • [22] J. Stasheff, The image of J as a space $ \bmod\;p$, Conf. on Algebraic Topology (Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968), Univ. of Illinois at Chicago Circle, Chicago Ill., 1969, pp. 276-287. MR 41 #2679. MR 0258032 (41:2679)
  • [23] -, Torsion in BBSO, Pacific J. Math. 28 (1969), 677-680. MR 40 #6580. MR 0253365 (40:6580)
  • [24] N. Steenrod and D. Epstein, Cohomology operations, Ann. of Math. Studies, no. 50, Princeton Univ. Press, Princeton, N. J., 1962. MR 26 #3056. MR 0145525 (26:3056)
  • [25] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 15, 890. MR 0061823 (15:890a)
  • [26] A. Tsuchiya, Homology operations of ring spectrum of $ {H^\infty }$ type and their applications (mimeographed notes).
  • [27] R. Van de Velde, A Hopf algebra of partitions and some applications, Ph.D. Thesis, University of Chicago, Chicago, Ill., 1967.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55F45, 55G99

Retrieve articles in all journals with MSC: 55F45, 55G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0331386-2
Keywords: Classical group, classifying space, homogeneous space, image of J, $ {E_\infty }$-operad, Bott periodicity, suspension map and Nishida relations
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society