Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Harmonic analysis for functors on categories of Banach spaces of distributions


Author: Thomas Donaldson
Journal: Trans. Amer. Math. Soc. 185 (1973), 1-82
MSC: Primary 46F99; Secondary 46M15
DOI: https://doi.org/10.1090/S0002-9947-1973-0440365-6
MathSciNet review: 0440365
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper develops a theory of harmonic analysis (Fourier series, approximation, convolution, and singular integrals) for a general class of Banach function or distribution spaces. Continuity of singular convolution operators and convergence of trigonometric series is shown with respect to the norms of all the spaces in this class; the maximal class supporting a theory of the type developed in this paper is characterized (for other classes other theories exist). Theorems are formulated in category language throughout. However only elementary category theory is needed, and for most results the notions of functor and natural mapping are sufficient.


References [Enhancements On Off] (What's this?)

  • [1] A. Benedek, A. P. Calderón and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365. MR 24 #A3479. MR 0133653 (24:A3479)
  • [2] R. G. Bartle, A general bilinear vector integral, Studia Math. 15 (1956), 337-352. MR 18, 289. MR 0080721 (18:289a)
  • [3] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. MR 29 #5097. MR 0167830 (29:5097)
  • [4] A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901-921. MR 20 #7196. MR 0100768 (20:7196)
  • [5] C. V. Comisky, Multipliers of Banach modules, Nederl. Akad. Wetensch. Proc. Ser. A 74 = Indag. Math. 33 (1971), 32-38. MR 43 #5307. MR 0279585 (43:5307)
  • [6] C. Corduneanu, Admissibility with respect to an integral operator and applications, Studies in Appl. Math., no. 5, SIAM, Philadelphia, Pa., 1969, pp. 55-64. MR 0377600 (51:13771)
  • [7] T. K. Donaldson, Singular integrals in Banach function spaces, Research Report, Australian National University, 1971.
  • [8] J. Dieudonné, Sur les espaces de Köthe, J. Analyse Math. 1(1951), 81-115. MR 12, 834. MR 0041347 (12:834b)
  • [9] N. Dinculeanu, Vector measures, Internat. Series of Monographs in Pure and Appl. Math., vol. 95, Pergamon Press, Oxford; VEB Deutscher Verlag der Wissenschaften, Berlin, 1967. MR 34 #6011b. MR 0206190 (34:6011b)
  • [10] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [11] R. E. Edwards, Fourier series: A modern introduction. Vols. I, II, Holt, Rinehart and Winston, New York, 1967. MR 35 #7062; MR 36 #5588. MR 0216227 (35:7062)
  • [12] A. Figa-Talamanca and G. I. Gaudry, Density and representation theorems for multipliers of the type (p, q), J. Austral. Math. Soc. 7 (1967), 1-6. MR 35 #666. MR 0209770 (35:666)
  • [13] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17 #763. MR 0075539 (17:763c)
  • [14] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 22 #12389. MR 0121655 (22:12389)
  • [15] Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968. MR 40 #1734. MR 0248482 (40:1734)
  • [16] J. J. Kohn and L. Nirenberg, An algebra of pseudodifferential operators, Comm. Pure Appl. Math. 18 (1965), 269-305. MR 31 #636. MR 0176362 (31:636)
  • [17] M. A. Krasnosel'skii and Ja. B. Rutickii, Convex functions and Orlicz spaces, Problems of Contemporary Math., GITTL, Moscow, 1958; English transl., Noordhoff, Groningen, 1961. MR 21 #5144; MR 23 #A4016. MR 0126722 (23:A4016)
  • [18] G. G. Lorentz, Bernstein polynomials, Mathematical Expositions, no. 8, Univ. of Toronto Press, Toronto, 1953. MR 15, 217. MR 0057370 (15:217a)
  • [19] -, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55. MR 11, 442. MR 0033449 (11:442d)
  • [20] -, On the theory of spaces $ \Lambda $, Pacific J. Math. 1 (1951), 411-429. MR 13, 470. MR 0044740 (13:470c)
  • [21] W. A. J. Luxemburg, Banach function spaces, Thesis, Technische Hogeschool te Delft, 1955. MR 17, #285. MR 0072440 (17:285a)
  • [22] J. L. Massera and J. J. Schaeffer, Linear differential equations and function spaces, Pure and Appl. Math., vol. 21, Academic Press, New York, 1966. MR 35 #3197. MR 0212324 (35:3197)
  • [23] S. G. Mihlin, Multi-dimensional singular integrals and integral equations, Fizmatgiz, Moscow, 1962; English transl., Pergamon Press, New York, 1965. MR 27 #5105; MR 32 #2866. MR 0185399 (32:2866)
  • [24] B. S. Mitjagin and A. S. Švarc, Functors in categories of Banach spaces, Uspehi Mat. Nauk 19 (1964), no. 2 (116), 65-130 = Russian Math. Surveys 19 (1964), no. 2, 65-127. MR 29 #3866. MR 0166593 (29:3866)
  • [25] R. O'Neil, Fractional integration in Orlicz spaces. I, Trans. Amer. Math. Soc. 115 (1965), 300-328. MR 33 #3087. MR 0194881 (33:3087)
  • [26] -, Integral transforms and tensor products on Orlicz spaces and $ L(p,q)$ spaces, J. Analyse Math. 21 (1968), 1-276. MR 0626853 (58:30125)
  • [27] J. Peetre, On the theory of $ {\mathcal{L}_{p,\lambda }}$ spaces, J. Functional Analysis 4 (1969), 71-87. MR 39 #3300. MR 0241965 (39:3300)
  • [28] -, On convolution operators leaving $ {L^{p,\lambda }}$ spaces invariant, Ann. Mat. Pura Appl. (4) 72 (1966), 295-304. MR 35 #812. MR 0209917 (35:812)
  • [29] W. Pogorzelski, Integral equations and their applications. Vols. 1-3, PWN, Warsaw, 1953, 1958, 1960; English transl., Pergamon Press, Oxford; PWN, Warsaw, 1966. MR 16, 46; MR 20 #213; MR 28 #2415; MR 34 #1811. MR 0201934 (34:1811)
  • [30] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443-491. MR 0223496 (36:6544)
  • [31] -, Multipliers and tensor products of $ {L^p}$ spaces of locally compact groups, Studia Math. 33 (1969), 71-82. MR 39 #6078. MR 0244764 (39:6078)
  • [32] J. J. Schäffer, Function spaces with translations, Math. Ann. 137 (1959), 209-262. MR 21 #287. MR 0101476 (21:287)
  • [33] R. Schatten, A theory of Cross spaces, Ann. of Math. Studies, no. 26, Princeton Univ. Press, Princeton, N.J., 1950. MR 12, 186. MR 0036935 (12:186e)
  • [34] J. T. Schwartz, A remark on inequalities of Calderón-Zygmund type for vector-valued functions, Comm. Pure Appl. Math. 14 (1961), 785-799. MR 26 #597. MR 0143031 (26:597)
  • [35] L. Schwartz, Théorie des distributions. Tome I, Actualités Sci. Indust., no. 1091, Hermann, Paris, 1950. MR 12, 31. MR 0035918 (12:31d)
  • [36] -, Théorie des distributions à valeurs vectorielles. I, Ann. Inst. Fourier (Grenoble) 7 (1957), 1-141. MR 21 #6534. MR 0107812 (21:6534)
  • [37] R. T. Seeley, Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781-809. MR 35 #810. MR 0209915 (35:810)
  • [38] H. Shapiro, A Tauberian theorem related to approximation theory, Acta Math. 120 (1968), 279-292. MR 39 #689. MR 0239332 (39:689)
  • [39] V. L. Shapiro, Fourier series in several variables, Bull. Amer. Math. Soc. 70 (1964), 48-93. MR 28 #1448. MR 0158222 (28:1448)
  • [40] A. S. Švarc, Duality of functors, Dokl. Akad. Nauk SSSR 148 (1963), 288-291 = Soviet Math. Dokl. 4 (1963), 89-92. MR 29 #5887. MR 0168629 (29:5887)
  • [41] M. S. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space. I. Principal properties, J. Math. Mech. 13 (1964), 407-479. MR 29 #462. MR 0163159 (29:462)
  • [42] -, On the theory of Lipschitz spaces of distributions on Euclidean n-space. II. Translation invariant operators, duality and interpolation, J. Math. Mech. 14 (1965), 821-839. MR 31 #5087. MR 0180857 (31:5087)
  • [43] A. Zygmund, Smooth functions, Duke Math J. 12 (1945), 47-76. MR 7, 60. MR 0012691 (7:60b)
  • [44] -, On the preservation of classes of functions, J. Math. Mech. 8 (1959), 889-895; erratum, ibid. 9 (1960), 663. MR 22 #8277. MR 0117498 (22:8277)
  • [45] -, Trigonometric series. Vols. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46F99, 46M15

Retrieve articles in all journals with MSC: 46F99, 46M15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0440365-6
Keywords: General Banach function space, $ {L^p}$ space, Orlicz space, Lorentz space, O'Neil space, Sobolev space, Lipschitz spaces, Fourier series, singular integrals, approximation, inverse theorems, multipliers, Calderón-Zygmund operators, interpolation functors, Hölder functor, Banach space categories
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society