Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Elementary divisor rings and finitely presented modules


Authors: Max D. Larsen, William J. Lewis and Thomas S. Shores
Journal: Trans. Amer. Math. Soc. 187 (1974), 231-248
MSC: Primary 13F05
DOI: https://doi.org/10.1090/S0002-9947-1974-0335499-1
MathSciNet review: 0335499
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Throughout, rings are commutative with unit and modules are unital. We prove that R is an elementary divisor ring if and only if every finitely presented module over R is a direct sum of cyclic modules, thus providing a converse to a theorem of Kaplansky and answering a question of Warfield. We show that every Bezout ring with a finite number of minimal prime ideals is Hermite. So, in particular, semilocal Bezout rings are Hermite answering affirmatively a question of Henriksen. We show that every semihereditary Bezout ring is Hermite. Semilocal adequate rings are characterized and a partial converse to a theorem of Henriksen is established.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Eléments de mathématique. Fasc. XXVII. Algèbre commutative. Chap. 1: Modules plats, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
  • [2] Hans Fitting, Über den Zusammenhang zwischen dem Begriff der Gleichartigkeit zweier Ideale und dem Äquivalenzbegriff der Elementarteilertheorie, Math. Ann. 112 (1935/36), 572-582. MR 1513062
  • [3] Leonard Gillman and Melvin Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366-391. MR 18, 9. MR 0078980 (18:9d)
  • [4] -, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956), 362-365. MR 18, 9. MR 0078979 (18:9c)
  • [5] William Heinzer and Jack Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971), 273-284. MR 43 #6192. MR 0280472 (43:6192)
  • [6] Olaf Helmer, The elementary divisor theorem for certain rings without chain conditions, Bull. Amer. Math. Soc. 49 (1943), 225-236. MR 4, 185. MR 0007744 (4:185d)
  • [7] Melvin Henriksen, Some remarks on elementary divisor rings. II, Michigan Math. J. 3 (1955/56), 159-163. MR 19, 1155. MR 0092772 (19:1155i)
  • [8] Paul Jaffard, Les systèmes d'idéaux, Travaux et Recherches Mathématiques, IV, Dunod, Paris, 1960. MR 22 #5628. MR 0114810 (22:5628)
  • [9] Christian U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar. 17 (1966), 115-123. MR 32 #7577. MR 0190163 (32:7577)
  • [10] Irving Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 40 #7234. MR 0254021 (40:7234)
  • [11] -, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491. MR 11, 155. MR 0031470 (11:155b)
  • [12] Jean-Pierre Lafon, Anneaux locaux commutatifs sur lesquels tout module de type fini est somme directe de modules monogénes, J. Algebra 17 (1971), 575-591. MR 44 #202. MR 0282968 (44:202)
  • [13] -, Sur les anneaux commutatifs d'Hermite et à diviseurs élémentaires, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A964-A966. MR 44 #6675.
  • [14] Joachim Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966. MR 34 #5857. MR 0206032 (34:5857)
  • [15] Hideyuki Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 42 #1813. MR 0266911 (42:1813)
  • [16] Marion Moore and Arthur Steger, Some results on completability in commutative rings, Pacific J. Math. 37 (1971), 453-460. MR 0306182 (46:5309)
  • [17] Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790. MR 0155856 (27:5790)
  • [18] Jack Ohm, Semi-valuations and groups of divisibility, Canad. J. Math. 21 (1969), 576-591. MR 39 #4146. MR 0242819 (39:4146)
  • [19] R. B. Warfield, Jr., Decomposibility of finitely presented modules, Proc. Amer. Math. Soc. 25 (1970), 167-172. MR 40 #7243. MR 0254030 (40:7243)
  • [20] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006. MR 0120249 (22:11006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13F05

Retrieve articles in all journals with MSC: 13F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0335499-1
Keywords: Bezout rings, finitely presented modules, Hermite rings, elementary divisor rings, adequate rings
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society