Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Isolated singularities for solutions of the nonlinear stationary Navier-Stokes equations


Author: Victor L. Shapiro
Journal: Trans. Amer. Math. Soc. 187 (1974), 335-363
MSC: Primary 35Q10
DOI: https://doi.org/10.1090/S0002-9947-1974-0380158-2
MathSciNet review: 0380158
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The notion for (u, p) to be a distribution solution of the nonlinear stationary Navier-Stokes equations in an open set is defined, and a theorem concerning the removability of isolated singularities for distribution solutions in the punctured open ball $ B(0,{r_0}) - \{ 0\} $ is established. This result is then applied to the classical situation to obtain a new theorem for the removability of isolated singularities. In particular, in two dimensions this gives a better than expected result when compared with the theory of removable isolated singularities for harmonic functions.


References [Enhancements On Off] (What's this?)

  • [1] A. P. Calderón and A. Zygmund, Singular integrals and periodic functions, Studia Math. 14 (1954), 249-271. MR 16, 1017. MR 0069310 (16:1017a)
  • [2] Günter Hellwig, Partielle Differentialgleichungen: Eine Einführung, Mathematische Leitfäden, Teubner Verlagsgesellschaft, Stuttgart, I960; English transl., Blaisdell, Waltham, Mass., 1964. MR 22 #5794; MR 30 #3286.
  • [3] O. A. Ladyženskaja, Mathematical problems in the dynamics of a viscous incompressible flow, Fizmatgiz, Moscow, 1961; English rev. ed., Gordon and Breach, New York, 1969. MR 27 #5034a; MR 40 #7610.
  • [4] V. L. Shapiro, Topics in Fourier and geometric analysis, Mem. Amer. Math. Soc. No. 39 (1961). MR 26 #5339. MR 0147826 (26:5339)
  • [5] -, Fourier series in several variables, Bull. Amer. Math. Soc. 70 (1964), 48-93. MR 28 #1448. MR 0158222 (28:1448)
  • [6] -, Characteristic planes and pointwise solutions of the heat equation, Indiana Univ. Math. J. 20 (1971), 115-133. MR 41 #8844. MR 0264248 (41:8844)
  • [7] -, Removable sets for pointwise solutions of the generalized Cauchy-Riemann equations, Ann. of Math. (2) 92 (1972), 82-101. MR 0437898 (55:10819)
  • [8] L. Bers, F. John and M. Schechter, Partial differential equations, Lectures in Appl. Math., vol. 3, Interscience, New York, 1964. MR 29 #346. MR 598466 (82c:35001)
  • [9] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225. MR 25 #310. MR 0136849 (25:310)
  • [10] R. H. Dyer and D. E. Edmunds, Removable singularities of solutions of the Navier-Stokes equations, J. London Math. Soc. (2) 2 (1970), 535-538. MR 42 #697. MR 0265788 (42:697)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35Q10

Retrieve articles in all journals with MSC: 35Q10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0380158-2
Keywords: Stationary Navier-Stokes equations, isolated singularities, nonlinear, distribution solution
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society