The structure of completely regular semigroups

Author:
Mario Petrich

Journal:
Trans. Amer. Math. Soc. **189** (1974), 211-236

MSC:
Primary 20M10

MathSciNet review:
0330331

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The principal result is a construction of completely regular semigroups in terms of semilattices of Rees matrix semigroups and their translational hulls. The main body of the paper is occupied by considerations of various special cases based on the behavior of either Green's relations or idempotents. The influence of these special cases on the construction in question is studied in considerable detail. The restrictions imposed on Green's relations consist of the requirement that some of them be congruences, whereas the restrictions on idempotents include various covering conditions or the requirement that they form a subsemigroup.

**[1]**A. H. Clifford,*Semigroups admitting relative inverses*, Ann. of Math. (2)**42**(1941), 1037–1049. MR**0005744****[2]**A. H. Clifford,*Bands of semigroups*, Proc. Amer. Math. Soc.**5**(1954), 499–504. MR**0062119**, 10.1090/S0002-9939-1954-0062119-9**[3]**A. H. Clifford,*The structure of orthodox unions of groups*, Semigroup Forum**3**(1971/72), no. 4, 283–337. MR**0301117****[4]**A. H. Clifford and G. B. Preston,*The algebraic theory of semigroups. Vol. I*, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR**0132791****[5]**P. H. H. Fantham,*On the classification of a certain type of semigroup*, Proc. London Math. Soc. (3)**10**(1960), 409–427. MR**0121411****[6]**J. M. Howie and G. Lallement,*Certain fundamental congruences on a regular semigroup*, Proc. Glasgow Math. Assoc.**7**(1966), 145–159. MR**0197598****[7]**Ján Ivan,*On the decomposition of simple semigroups into a direct product*, Mat.-Fyz. Časopis. Slovensk. Akad. Vied**4**(1954), 181–202 (Slovak, with Russian summary). MR**0072881****[8]**Naoki Kimura,*The structure of idempotent semigroups. I*, Pacific J. Math.**8**(1958), 257–275. MR**0102563****[9]**Gérard Lallement,*Demi-groupes réguliers*, Ann. Mat. Pura Appl. (4)**77**(1967), 47–129 (French). MR**0225915****[10]**J. Leech,*The structure of bands of groups*(to appear).**[11]**Mario Petrich,*Semigroups certain of whose subsemigroups have identities*, Czechoslovak Math. J.**16 (91)**(1966), 186–198 (English, with Russian summary). MR**0200370****[12]**Mario Petrich,*The translational hull of a completely 0simple semigroup*, Glasgow Math. J.**9**(1968), 1–11. MR**0229739****[13]**Mario Petrich,*A construction and a classification of bands*, Math. Nachr.**48**(1971), 263–274. MR**0294542****[14]**Mario Petrich,*Regular semigroups satisfying certain conditions on idempotents and ideals*, Trans. Amer. Math. Soc.**170**(1972), 245–267. MR**0304522**, 10.1090/S0002-9947-1972-0304522-0**[15]**Mario Petrich,*Regular semigroups which are subdirect products of a band and a semilattice of groups*, Glasgow Math. J.**14**(1973), 27–49. MR**0313430****[16]**Miyuki Yamada,*Strictly inversive semigroups*, Bull. Shimane Univ. Natur. Sci.**13**(1963), 128–138 (1964). MR**0393307****[17]**Miyuki Yamada,*Inversive semigroups. III*, Proc. Japan Acad.**41**(1965), 221–224. MR**0186747****[18]**Miyuki Yamada and Naoki Kimura,*Note on idempotent semigroups. II*, Proc. Japan Acad.**34**(1958), 110–112. MR**0098141**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20M10

Retrieve articles in all journals with MSC: 20M10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0330331-4

Keywords:
Completely regular semigroups,
orthodox semigroups,
bands of groups,
semilattices of groups,
translational hull,
completely simple semigroups,
rectangular groups,
classification of semigroups

Article copyright:
© Copyright 1974
American Mathematical Society