Extensions of the -integral

Authors:
J. R. Edwards and S. G. Wayment

Journal:
Trans. Amer. Math. Soc. **191** (1974), 165-184

MSC:
Primary 28A25; Secondary 28A45

DOI:
https://doi.org/10.1090/S0002-9947-1974-0349941-3

MathSciNet review:
0349941

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In *Representations for transformations continuous in the BV norm* [J. R. Edwards and S. G. Wayment, Trans. Amer. Math. Soc. **154** (1971), 251-265] the -integral is defined over intervals in and is used to give a representation for transformations continuous in the BV norm. The functions *f* considered therein are real valued or have values in a linear normed space *X*, and the transformation is real or has values in a linear normed space *Y*. In this paper the -integral is extended in several directions: (1) The domain space to (a) , (b) an arbitrary space *S*, a field of subsets of *S* and a bounded positive finitely additive set function on (in this setting the function space is replaced by the space of finitely additive set functions which are absolutely continuous with respect to ); (2) the function space to (a) bounded continuous, (b) , (c) , (d) *C* with uniform convergence on compact sets; (3) range space *X* for the functions and *Y* for the transformation to topological vector spaces (not necessarily convex); (4) when *X* and *Y* are locally convex spaces, then a representation for transformations on a -type space of continuously differentiable functions with values in *X* is given.

**[1]**N. Dunford and J. T. Schwartz,*Linear operators*. I:*General theory*, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR**22**#8302. MR**0117523 (22:8302)****[2]**R. J. Easton and D. H. Tucker,*A generalized Lebesgue-type integral*, Math. Ann.**181**(1969), 211-324. MR**1513279****[3]**R. J. Easton and S. G. Wayment,*A mean value theorem*, Amer. Math. Monthly**77**(1970), 170-172. MR**41**#419. MR**0255759 (41:419)****[4]**R. J. Easton, D. H. Tucker and S. G. Wayment,*On the existence almost everywhere of the cross partial derivatives*, Math. Z.**102**(1967), 171-176. MR**36**# 1588. MR**0218502 (36:1588)****[5]**J. R. Edwards and S. G. Wayment,*A v-integral representation for linear operators on spaces of continuous functions with values in topological vector spaces*, Pacific J. Math.**35**(1970), 327-330. MR**43**# 465. MR**0274703 (43:465)****[6]**-,*A v-integral representation for the continuous linear operators on a space of continuously differentiable vector-valued functions*, Proc. Amer. Math. Soc.**30**(1971), 263-270. MR**43**# 6750. MR**0281031 (43:6750)****[7]**-,*A unifying representation theorem*, Math. Ann.**187**(1970), 317-328. MR**42**# 5074. MR**0270181 (42:5074)****[8]**-,*Integral representations for continuous linear operators in the setting of convex topological vector spaces*, Trans. Amer. Math. Soc.**157**(1971), 329-345. MR**43**#7581. MR**0281867 (43:7581)****[9]**-,*Representations for transformations continuous in the BV norm*, Trans. Amer. Math. Soc.**154**(1971), 251-265. MR**43**# 466. MR**0274704 (43:466)****[10]**C. A. Fefferman,*Radon-Nikodym theorem for finitely additive set functions*, Pacific J. Math.**23**(1967), 35-45. MR**35**# 6791. MR**0215956 (35:6791)****[11]**R. K. Goodrich,*A Riesz representation theorem in the setting of locally convex spaces*, Trans. Amer. Math. Soc.**131**(1968), 246-258. MR**36**#5731. MR**0222681 (36:5731)****[12]**D. H. Tucker,*An existence theorem for a Goursat problem*, Pacific J. Math.**12**(1962), 719-727. MR**26**# 1623. MR**0144075 (26:1623)****[13]**-,*A representation theorem for a continuous linear transformation on a space of continuous functions*, Proc. Amer. Math. Soc.**16**(1965), 946-953. MR**33**# 7865. MR**0199722 (33:7865)****[14]**D. J. Uherka,*Generalized Stieltjes integrals and a strong representation theorem for continuous linear maps on a function space*, Math. Ann.**182**(1969), 60-66. MR**40**#705. MR**0247439 (40:705)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
28A25,
28A45

Retrieve articles in all journals with MSC: 28A25, 28A45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0349941-3

Keywords:
Generalized Stieltjes integral,
-integral,
convex space,
topological vector space,
bounded variation,
bounded semivariation,
weak bounded variation,
spaces of absolutely continuous functions,
spaces of continuous functions,
Lebesgue-type spaces of functions,
spaces of continuously differentiable functions,
convex with respect to area,
-quasi-Gowurin,
fundamental function,
integral representation

Article copyright:
© Copyright 1974
American Mathematical Society