Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Lower semicontinuity of integral functionals


Author: Leonard D. Berkovitz
Journal: Trans. Amer. Math. Soc. 192 (1974), 51-57
MSC: Primary 49A50
DOI: https://doi.org/10.1090/S0002-9947-1974-0348582-1
MathSciNet review: 0348582
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the integral functional $ I(y,z) = {\smallint _G}f(t,y(t),z(t))d\mu $ is lower semicontinuous on its domain with respect to the joint strong convergence of $ {y_k} \to y$ in $ {L_p}(G)$ and the weak convergence of $ {z_k} \to z$ in $ {L_p}(G)$, where $ 1 \leq p \leq \infty $ and $ 1 \leq q \leq \infty $, under the following conditions. The function $ f:(t,x,w) \to f(t,x,w)$ is measurable in t for fixed (x, w), is continuous in (x, w) for a.e. t, and is convex in w for fixed (t, x).


References [Enhancements On Off] (What's this?)

  • [1] L. D. Berkovitz, Existence theorems in problems of optimal control, Studia Math. 44 (1972), 275-285. MR 0317132 (47:5680)
  • [2] -, Existence and lower closure theorems for abstract control problems, SIAM J. Control (to appear). MR 0341254 (49:6004)
  • [3] F. Browder, Remarks on the direct method of the calculus of variations, Arch. Rational Mech. Anal. 20 (1965), 251-258. MR 32 #4576. MR 0187122 (32:4576)
  • [4] G. Fichera, Semicontinuity of multiple integrals in ordinary form, Arch. Rational Mech. Anal. 17 (1964), 339-352. MR 29 #6354. MR 0169099 (29:6354)
  • [5] M. A. Krasnosel'skiĭ, P. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, Integral operators in spaces of summable functions, ``Nauka", Moscow, 1966. (Russian) MR 34 #6568. MR 0206751 (34:6568)
  • [6] J. L. Lions, Optimal control of systems governed by partial differential equations, Die Grundlehren der math. Wissenschaften, Band 170, Springer-Verlag, Berlin and New York, 1971. MR 42 #6395. MR 0271512 (42:6395)
  • [7] C. B. Morrey, Jr., Multiple integral problems in the calculus of variations and related topics, Univ. California Publ. Math. 1 (1943), 1-130. MR 6,180. MR 0011537 (6:180b)
  • [8] V. I. Plotnikov, Existence theorems on optimizing functions for optimal systems with distributed parameters, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 689-712 = Math. USSR Izv. 4 (1970), 697-719. MR 41 #7242. MR 0262637 (41:7242)
  • [9] B. T. Poljak, Semicontinuity of integral functionals and existence theorems on extremal problems, Mat. Sb. 78 120 (1969), 65-84 = Math. USSR Sb. 7 (1969), 59-77. MR 39 #6140. MR 0244826 (39:6140)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49A50

Retrieve articles in all journals with MSC: 49A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0348582-1
Keywords: Lower semicontinuity, optimal control of distributed parameter systems, existence theorems in variational problems
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society