Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Groups, semilattices and inverse semigroups. I, II


Author: D. B. McAlister
Journal: Trans. Amer. Math. Soc. 192 (1974), 227-244
MSC: Primary 20M10
DOI: https://doi.org/10.1090/S0002-9947-1974-0357660-2
MathSciNet review: 0357660
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An inverse semigroup S is called proper if the equations $ ea = e = {e^2}$ together imply $ {a^2} = a$ for each a, $ a,e \in S$. In this paper a construction is given for a large class of proper inverse semigroups in terms of groups and partially ordered sets; the semigroups in this class are called P-semigroups. It is shown that every inverse semigroup divides a P-semigroup in the sense that it is the image, under an idempotent separating homomorphism, of a full subsemigroup of a P-semigroup. Explicit divisions of this type are given for $ \omega $-bisimple semigroups, proper bisimple inverse semigroups, semilattices of groups and Brandt semigroups.


References [Enhancements On Off] (What's this?)

  • [1] J. Ault and M. Petrich, The structure of $ \omega $-regular semigroups, Bull. Amer. Math. Soc. 77 (1971), 196-199. MR 42 #4654. MR 0269759 (42:4654)
  • [2] A. H. Clifford, Semigroups admitting relative inverses, Ann. of Math. (2) 42 (1941), 1037-1049. MR 3, 199. MR 0005744 (3:199c)
  • [3] A. Coudron, Sur les extensions des demigroupes réciproques, Bull. Soc. Roy. Sci. Liège 37 (1968), 409-419. MR 39 #1579. MR 0240227 (39:1579)
  • [4] H. D'Alarcao, Idempotent separating extensions of inverse semigroups, J. Austral. Math. Soc. 9 (1969), 211-217. MR 39 #330. MR 0238970 (39:330)
  • [5] J. M. Howie, The maximum idempotent separating congruence on an inverse semigroup, Proc. Edinburgh Math. Soc. (2) 14 (1964/65), 71-79. MR 29 #1275. MR 0163976 (29:1275)
  • [6] B. P. Kočin, The structure of inverse simple $ \omega $-semigroups, Vestnik Leningrad. Univ. 23 (1968), no. 7, 41-50. (Russian) MR 37 #2881. MR 0227296 (37:2881)
  • [7] G. Lallement, Structure d'une classe de demi-groupes inverses 0-simples, C.R. Acad. Sci. Paris Sér. A--B 271 (1970), A8-A11. MR 42 #3204. MR 0268305 (42:3204)
  • [8] D. B. McAlister, 0-bisimple inverse semigroups, Proc. London Math. Soc. (to appear). MR 0364507 (51:761)
  • [9] D. B. McAlister and R. McFadden, Zig-zag representations and inverse semigroups, J. Algebra (to appear). MR 0369590 (51:5823)
  • [10] W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5 (1961), 41-48. MR 27 #3723. MR 0153762 (27:3723)
  • [11] -, Uniform semilattices and bisimple inverse semigroups, Quart. J. Math. Oxford Ser. (2) 17 (1966), 151-159. MR 33 #7441. MR 0199292 (33:7441)
  • [12] -, Regular $ \omega $-semigroups, Glasgow Math. J. 9 (1968), 46-66. MR 37 #5316. MR 0229742 (37:5316)
  • [13] -, Fundamental inverse semigroups, Quart. J. Math. Oxford Ser. (2) 21 (1970), 157-170. MR 41 #7010. MR 0262402 (41:7010)
  • [14] -, On simple inverse semigroups, Semigroup Forum 1 (1970), no.l, 63-74. MR 41 #8553. MR 0263954 (41:8553)
  • [15] W. D. Munn and N. R. Reilly, Congruences on a bisimple $ \omega $-semigroup, Proc. Glasgow Math. Assoc. 7 (1966), 184-192. MR 33 #7440. MR 0199291 (33:7440)
  • [16] G. B. Preston, Inverse semigroups with minimal right ideals, J. London Math. Soc. 29 (1954), 396-403. MR 16, 215. MR 0064037 (16:215d)
  • [17] N. R. Reilly, Bisimple $ \omega $-semigroups, Proc. Glasgow Math. Assoc. 7 (1966), 160-167. MR 32 #7665. MR 0190252 (32:7665)
  • [18] -, Bisimple inverse semigroups, Trans. Amer. Math. Soc. 132 (1968), 101-114. MR 37 #2877. MR 0227292 (37:2877)
  • [19] J. Rhodes, Algebraic theory of finite semigroups: Structure numbers and structure theorems for finite semigroups, Semigroups (Proc. Sympos., Wayne State Univ., Detroit, Mich., 1968), Academic Press, New York, 1969, pp. 125-162. MR 43 #7531. MR 0281817 (43:7531)
  • [20] H. E. Scheiblich, Free inverse semigroups, Proc. Amer. Math. Soc. 38 (1973), 1-7. MR 0310093 (46:9196)
  • [21] V. V. Vagner, Generalised groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122. (Russian) MR 14, 12. MR 0048425 (14:12b)
  • [22] R. J. Warne, I-bisimple semigroups, Trans. Amer. Math. Soc. 130 (1968), 367-386. MR 36 #6524. MR 0223476 (36:6524)
  • [23] -, $ {\omega ^n}$-I-bisimple semigroups, Acto Math. Sci. Hungar. 21 (1970), 121-150. MR 41 #3643. MR 0258998 (41:3643)
  • [24] -, I-regular semigroups, Math. Japon. 15 (1970), 91-100. MR 44 #5398. MR 0288200 (44:5398)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20M10

Retrieve articles in all journals with MSC: 20M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0357660-2
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society