Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A nonlinear Boltzmann equation in transport theory


Author: C. V. Pao
Journal: Trans. Amer. Math. Soc. 194 (1974), 167-175
MSC: Primary 82.45
DOI: https://doi.org/10.1090/S0002-9947-1974-0347294-8
MathSciNet review: 0347294
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The method of successive approximations is used to show the existence of a unique solution to a model of a nonlinear Boltzmann equation under the homogeneous boundary and typical initial conditions. An explicit formula in terms of the prescribed functions for the calculation of an approximate solution and its error estimate are given. This formula reveals an interesting analogy between the initial-boundary value problem of the Boltzmann equation and the Cauchy problem for ordinary differential equations. Numerical results for approximate solutions of the problem can be computed by using a computer. The linear Boltzmann equation is considered as a special case and a similar formula for the calculation of approximate solutions is included.


References [Enhancements On Off] (What's this?)

  • [1] L. Arkeryd, An existence theorem for a modified space-inhomogeneous, nonlinear Boltzmann equation, Bull. Amer. Math. Soc. 78 (1972), 610-614. MR 45 #8195. MR 0299146 (45:8195)
  • [2] R. Bellman, G. Birkhoff and I. Abu-Shumays (Editors), Transport theory, SIAM-AMS Proceedings, Vol. 1, Amer. Math. Soc., Providence, R. I., 1969. MR 0253849 (40:7062)
  • [3] G. Birkhoff, Positivity and criticality, Proc. Sympos. Appl. Math., vol. 11, Amer. Math. Soc., Providence, R. I., 1961, pp. 116-126. MR 22 #11563. MR 0120814 (22:11563)
  • [4] S. Chandrasekhar, Radiative transfer, Dover, New York, 1960. MR 22 #2446. MR 0111583 (22:2446)
  • [5] B. Davison and J. B. Sykes, Neutron transport theory, Clarendon Press, Oxford, 1957. MR 20 #2217. MR 0095716 (20:2217)
  • [6] H. Grad, Principles of the kinetic theory of gases, Handbuch der Physik (herausgegeben von S. Flügge), Band 12, Thermodynamik der Gase, Springer-Verlag, Berlin, 1958, pp. 205-294. MR 24 #B1583. MR 0135535 (24:B1583)
  • [7] -, Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations, Proc. Sympos. Appl. Math., vol. 17, Amer. Math. Soc., Providence, R. I., 1965, pp. 154-183. MR 32 # 1979. MR 0184507 (32:1979)
  • [8] F. A. Grünbaum, Linearization for the Boltzmann equation, Trans. Amer. Math. Soc. 165 (1972), 425-449. MR 45 #4783. MR 0295718 (45:4783)
  • [9] H. Hejtmanek, Perturbational aspects of the linear transport equation, J. Math. Anal. Appl. 30 (1970), 237-245. MR 41 #2333. MR 0257683 (41:2333)
  • [10] E. Inönü and P. E. Zweifel, Developments in transport theory, Academic Press, New York, 1967.
  • [11] M. Kac, Foundations of kinetic theory, Proc. Third Berkeley Sympos. on Math. Statist. and Probability, 1954/55, vol. III, Univ. of California Press, Berkeley and Los Angeles, 1956, pp. 171-197. MR 18, 960. MR 0084985 (18:960i)
  • [12] J. Lehner and G. M. Wing, On the spectrum of an unsymmetric operator arising in the transport theory of neutrons, Comm. Pure Appl. Math 8 (1955), 217-234. MR 16, 1120. MR 0070038 (16:1120f)
  • [13] C. V. Pao, On nonlinear neutron transport equations, J. Math. Anal. Appl. 42 (1973), 578-593. MR 0321464 (47:9997)
  • [14] -, Solution of a nonlinear Boltzmann equation for neutron transport in $ {L^1}$ space, Arch. Rational Mech. Anal. 50 (1973), 290-302. MR 0337237 (49:2007)
  • [15] A. Suhadolc, Linearized Boltzmann equation in $ {L^1}$ space, J. Math. Anal. Appl. 35 (1971), 1-13. MR 44 #3635. MR 0286426 (44:3635)
  • [16] I. Vidar, Spectra of perturbed semi-groups with applications to transport theory, J. Math. Anal. Appl. 30 (1970), 264-279. MR 41 #4297. MR 0259662 (41:4297)
  • [17] G. M. Wing, An introduction to transport theory, Wiley, New York, 1962. MR 27 #5580. MR 0155646 (27:5580)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 82.45

Retrieve articles in all journals with MSC: 82.45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0347294-8
Keywords: Boltzmann equations, neutron transport problems, initial-boundary value problems, successive approximations, existence and uniqueness of a solution, operator equations
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society