Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The inertial aspects of Stein's condition $ H-C\sp{\ast}\ HC\gg O$


Author: Bryan E. Cain
Journal: Trans. Amer. Math. Soc. 196 (1974), 79-91
MSC: Primary 47A10
DOI: https://doi.org/10.1090/S0002-9947-1974-0350449-X
MathSciNet review: 0350449
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: To each bounded operator C on the complex Hilbert space $ \mathcal{H}$ we associate the vector space $ {\mathcal{K}_C}$ consisting of those $ x \in \mathcal{H}$ for which $ {C^n}x \to 0$ as $ n \to \infty $. We let $ \alpha (C)$ denote the dimension of the closure of $ {\mathcal{K}_C}$ and we set $ \beta (C) = \dim (\mathcal{K}_C^ \bot )$. Our main theorem states that if H is Hermitian and if $ H - {C^ \ast }HC$ is positive and invertible then $ \alpha (C) \leq \pi (H),\beta (C) = \nu (H)$, and $ \beta (C) \geq \delta (H)$ where $ (\pi (H),\nu (H),\delta (H))$ is the inertia of H. (That is, $ \pi (H) = \dim \;({\text{Range}}\;E[(0,\infty )])$) where E is the spectral measure of H; $ \nu (H) = \pi ( - H)$; and $ \delta (H) = \dim ({\operatorname{Ker}}\;H)$.) We also show (l) that in general no stronger conclusion is possible, (2) that, unlike previous inertia theorems, our theorem allows 1 to lie in $ \sigma (C)$, the spectrum of C, and (3) that the main inertial results associated with the hypothesis that $ \operatorname{Re} (HA)$ is positive and invertible can be derived from our theorem. Our theorems (1) characterize C in the extreme cases that either $ \pi (H) = 0$ or $ \nu (H) = 0$, and (2) prove that $ \alpha (C) = \pi (H),\beta (C) = \nu (H),\delta (H) = 0$ if either $ 1 \notin \sigma (C)$ or $ \beta (C) < \infty $.


References [Enhancements On Off] (What's this?)

  • [1] B. E. Cain, An inertia theory for operators on a Hilbert space, J. Math. Anal. Appl. 41 (1973), 97-114. MR 0317089 (47:5637)
  • [2] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • 1. -, Linear operators. II: Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181.
  • [3] T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [4] A. Ostrowski and H. Schneider, Some theorems on the inertia of general matrices, J. Math. Anal. Appl. 4 (1962), 72-84. MR 26 #124. MR 0142555 (26:124)
  • [5] F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, 2nd ed., Akad. Kiadó, Budapest, 1953; English transl., Functional analysis, Ungar, New York, 1955. MR 15, 132; 17, 175. MR 0071727 (17:175i)
  • [6] O. Taussky, A generalization of a theorem by Lyapunov, J. Soc. Indust. Appl. Math. 9 (1961), 640-643. MR 24 #A3170. MR 0133336 (24:A3170)
  • [7] -, Matrices C with $ {C^n} \to 0$, J. Algebra 1 (1964), 5-10. MR 28 #5069. MR 0161865 (28:5069)
  • [8] J. P. Williams, Similarity and the numerical range, J. Math. Anal. Appl. 26 (1969), 307-314. MR 39 #2010. MR 0240664 (39:2010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A10

Retrieve articles in all journals with MSC: 47A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0350449-X
Keywords: Direct sum decomposition, Hilbert space, inertia, invariant subspace, Lyapunov, spectral measure, spectrum, Stein
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society