Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Finite groups with a proper $ 2$-generated core


Author: Michael Aschbacher
Journal: Trans. Amer. Math. Soc. 197 (1974), 87-112
MSC: Primary 20D05
DOI: https://doi.org/10.1090/S0002-9947-1974-0364427-8
MathSciNet review: 0364427
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: H. Bender's classification of finite groups with a strongly embedded subgroup is an important tool in the study of finite simple groups. This paper proves two theorems which classify finite groups containing subgroups with similar but somewhat weaker embedding properties. The first theorem, classifying the groups of the title, is useful in connection with signalizer functor theory. The second theorem classifies a certain subclass of the class of finite groups possessing a permutation representation in which some involution fixes a unique point.


References [Enhancements On Off] (What's this?)

  • [1] J. Alperin, R. Brauer and D. Gorenstein, Finite groups of 2-rank 2 (to appear). MR 0284499 (44:1724)
  • [2] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlässt, J. Algebra 17 (1971), 527-554. MR 44 #5370. MR 0288172 (44:5370)
  • [3] D. Gorenstein and K. Harada, On finite groups with Sylow 2-subgroups of type $ {A_n},n = 8,9,10,11$, n = 8, 9, 10, 11, Math. Z. 117 (1970), 207-238. MR 0276348 (43:2095)
  • [4] -, Finite simple groups of low 2-rank and the families $ {G_2}(q),D_4^2(q)$, q odd, Bull. Amer. Math. Soc. 77 (1971), 829-862. MR 46 #5427. MR 0306301 (46:5427)
  • [5] -, Finite groups whose Sylow 2-subgroups are the direct product of two dihedral groups, Ann. of Math. 95 (1972), 1-54. MR 0313384 (47:1939)
  • [6] -, Finite groups of sectional 2-rank at most four (to appear).
  • [7] D. Gorenstein and J. H. Walter, Centralizers of involutions in balanced groups, J. Algebra 20 (1972), 284-319. MR 45 #2008. MR 0292927 (45:2008)
  • [8] E. Shult, On the fusion of an involution in its centralizer (to appear).
  • [9] J. G. Thompson, Fixed points of p-groups acting on p-groups, Math. Z. 86 (1964), 12-13. MR 29 #5911. MR 0168653 (29:5911)
  • [10] J. H. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. (2) 89 (1969), 405-514. MR 40 #2749. MR 0249504 (40:2749)
  • [11] M. Suzuki, Applications of group characters, Proc. Sympos. Pure Math., vol. 6, Amer. Math. Soc., Providence, R. I., 1962, pp. 101-105. MR 24 #A3196. MR 0133362 (24:A3196)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20D05

Retrieve articles in all journals with MSC: 20D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0364427-8
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society