Finite groups with a proper -generated core

Author:
Michael Aschbacher

Journal:
Trans. Amer. Math. Soc. **197** (1974), 87-112

MSC:
Primary 20D05

MathSciNet review:
0364427

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: H. Bender's classification of finite groups with a strongly embedded subgroup is an important tool in the study of finite simple groups. This paper proves two theorems which classify finite groups containing subgroups with similar but somewhat weaker embedding properties. The first theorem, classifying the groups of the title, is useful in connection with signalizer functor theory. The second theorem classifies a certain subclass of the class of finite groups possessing a permutation representation in which some involution fixes a unique point.

**[1]**J. L. Alperin, Richard Brauer, and Daniel Gorenstein,*Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups.*, Trans. Amer. Math. Soc.**151**(1970), 1–261. MR**0284499**, 10.1090/S0002-9947-1970-0284499-5**[2]**Helmut Bender,*Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt*, J. Algebra**17**(1971), 527–554 (German). MR**0288172****[3]**Daniel Gorenstein and Koichiro Harada,*On finite groups with Sylow 2-subgroups of type 𝐴_{𝑛}, 𝑛=8,9,10,11*, Math. Z.**117**(1970), 207–238. MR**0276348****[4]**Daniel Gorenstein and Koichiro Harada,*Finite simple groups of low 2-rank and the families 𝐺₂(𝑞),𝐷₄²(𝑞),𝑞 odd*, Bull. Amer. Math. Soc.**77**(1971), 829–862. MR**0306301**, 10.1090/S0002-9904-1971-12794-5**[5]**Daniel Gorenstein and Koichiro Harada,*Finite groups whose Sylow 2-subgroups are the direct product of two dihedral groups*, Ann. of Math. (2)**95**(1972), 1–54. MR**0313384****[6]**-,*Finite groups of sectional*2-*rank at most four*(to appear).**[7]**Daniel Gorenstein and John H. Walter,*Centralizers of involutions in balanced groups*, J. Algebra**20**(1972), 284–319. MR**0292927****[8]**E. Shult,*On the fusion of an involution in its centralizer*(to appear).**[9]**John G. Thompson,*Fixed points of 𝑝-groups acting on 𝑝-groups*, Math. Z.**86**(1964), 12–13. MR**0168653****[10]**John H. Walter,*The characterization of finite groups with abelian Sylow 2-subgroups.*, Ann. of Math. (2)**89**(1969), 405–514. MR**0249504****[11]**M. Suzuki,*Applications of group characters*, Proc. Sympos. Pure Math., Vol. VI, American Mathematical Society, Providence, R.I., 1962, pp. 101–105. MR**0133362**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20D05

Retrieve articles in all journals with MSC: 20D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0364427-8

Article copyright:
© Copyright 1974
American Mathematical Society