Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Subspaces of the nonstandard hull of a normed space


Authors: C. Ward Henson and L. C. Moore
Journal: Trans. Amer. Math. Soc. 197 (1974), 131-143
MSC: Primary 46B99; Secondary 02H25
MathSciNet review: 0365098
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Normed spaces which are isomorphic to subspaces of the nonstandard hull of a given normed space are characterized. As a consequence it is shown that a normed space is B-convex if and only if the nonstandard hull contains no subspace isomorphic to $ {l_1}$ and a Banach space is super-reflexive if and only if the nonstandard hull is reflexive. Also, embeddings of second dual spaces into the nonstandard hull are studied. In particular, it is shown that the second dual space of a normed space E is isometric to a complemented subspace of the nonstandard hull of E.


References [Enhancements On Off] (What's this?)

  • [1] A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Amer. Math. Soc. 13 (1962), 329-334. MR 24 #A3681. MR 0133857 (24:A3681)
  • [2] A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. on Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123-160. MR 25 #2518. MR 0139079 (25:2518)
  • [3] Daniel P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114-146; Additions and corrections, ibid. 140 (1969), 511-512. MR 34 #4866; 39 #1945. MR 0205031 (34:4866)
  • [4] C. Ward Henson and L. C. Moore, Jr., The nonstandard theory of topological vector spaces, Trans. Amer. Math. Soc. 172 (1972), 405-435. MR 46 #7836. MR 0308722 (46:7836)
  • [5] Robert C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542-550. MR 30 #4139. MR 0173932 (30:4139)
  • [6] -, Some self-dual properties of normed linear spaces, Sympos. on Infinite Dimensional Topology, Ann. of Math. Studies, no. 69, Princeton Univ. Press, Princeton, N.J., 1972, pp. 159-175. MR 0454600 (56:12849)
  • [7] -, Super-reflexive spaces with bases, Pacific J. Math. 41 (1972), 409-419. MR 46 #7866. MR 0308752 (46:7866)
  • [8] -, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896-904. MR 0320713 (47:9248)
  • [9] Robert C. James and J. J. Schäffer, Super-reflexivity and the girth of spheres, Israel J. Math. 11 (1972), 398-404. MR 46 #4175. MR 0305045 (46:4175)
  • [10] W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506. MR 43 #6702. MR 0280983 (43:6702)
  • [11] J. Lindenstrauss and H. P. Rosenthal, The $ {\mathcal{L}_p}$ spaces, Israel J. Math. 7 (1969), 325-349. MR 42 #5012. MR 0270119 (42:5012)
  • [12] W. A. J. Luxemburg, A general theory of monads, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 18-86. MR 39 #6244. MR 0244931 (39:6244)
  • [13] -, On some concurrent binary relations occurring in analysis, Contributions to Non-Standard Analysis, North-Holland, Amsterdam, 1972, pp. 85-100. MR 0482281 (58:2355)
  • [14] A. Robinson, Nonstandard analysis, North-Holland, Amsterdam, 1966. MR 34 #5680.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B99, 02H25

Retrieve articles in all journals with MSC: 46B99, 02H25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0365098-7
PII: S 0002-9947(1974)0365098-7
Article copyright: © Copyright 1974 American Mathematical Society