Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Complementation for right ideals in generalized Hilbert algebras


Author: John Phillips
Journal: Trans. Amer. Math. Soc. 197 (1974), 409-417
MSC: Primary 46K15
DOI: https://doi.org/10.1090/S0002-9947-1974-0385579-X
MathSciNet review: 0385579
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{A}$ be a generalized Hilbert algebra and let $ \mathcal{J}$ be a closed right ideal of $ \mathfrak{A}$. Let $ {\mathcal{J}^ \bot }$ denote the pre-Hilbert space orthogonal complement of $ \mathcal{J}$ in $ \mathfrak{A}$. The problem investigated in this paper is: for which algebras $ \mathfrak{A}$ is it true that $ \mathfrak{A} = \mathcal{J} \oplus {\mathcal{J}^ \bot }$ for every closed right ideal $ \mathcal{J}$ of $ \mathfrak{A}$? In the case that $ \mathfrak{A}$ is achieved, a slightly stronger property is characterized and these characterizations are then used to investigate some interesting examples.


References [Enhancements On Off] (What's this?)

  • [1] W. Ambrose, The $ {L^2}$-system of a unimodular group. I, Trans. Amer. Math. Soc. 65 (1949), 27-48. MR 10, 429. MR 0028322 (10:429d)
  • [2] F. Combes, Poids associé à une algébre Hilbertienne à gauche, Compositio Math. 23 (1971), 49-77. MR 44 #5786. MR 0288590 (44:5786)
  • [3] P. A. Fillmore and D. M. Topping, Operator algebras generated by projections, Duke Math. J. 34 (1967), 333-336. MR 35 #751. MR 0209855 (35:751)
  • [4] M. A. Rieffel, Square-integrable representations of Hilbert algebras, J. Functional Analysis 3 (1969), 265-300. MR 39 #6094. MR 0244780 (39:6094)
  • [5] M. Takesaki, Conditional expectations in von Neumann algebras, J. Functional Analysis 9 (1972), 306-321. MR 0303307 (46:2445)
  • [6] -, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes in Math., vol. 128, Springer-Verlag, Berlin and New York, 1970. MR 42 #5061.
  • [7] B. Yood, Hilbert algebras as topological algebras, Ark. Mat. 12 (1974), 131-151. MR 0380429 (52:1329)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46K15

Retrieve articles in all journals with MSC: 46K15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0385579-X
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society