Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A Prüfer transformation for the equation of the vibrating beam

Authors: D. O. Banks and G. J. Kurowski
Journal: Trans. Amer. Math. Soc. 199 (1974), 203-222
MSC: Primary 34C10
MathSciNet review: 0350111
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, the oscillatory properties of the eigenfunctions of an elastically constrained beam are studied. The method is as follows.

The eigenfunction and its first three derivatives are considered as a four-dimensional vector, $ (u,u',pu'',(pu'')')$. This vector is projected onto two independent planes and polar coordinates are introduced in each of these two planes. The resulting transformation is then used to study the oscillatory properties of the eigenfunctions and their derivatives in a manner analogous to the use of the Prüfer transformation in the study of second order Sturm-Liouville systems. This analysis yields, for a given set of boundary conditions, the number of zeros of each of the derivatives, $ u',pu'',(pu'')'$ and the relation of these zeros to the $ n - 1$ zeros of the $ n$th eigenfunction. The method also can be used to establish comparison theorems of a given type.

References [Enhancements On Off] (What's this?)

  • [1] D. Banks and G. Kurowski, Computation of eigenvalues for vibrating beams, SIAM J. Numer. Anal. (to appear). MR 0343634 (49:8374)
  • [2] L. Collatz, Eigenwerteprobleme und ihrer numerische Behandlung, Chelsea, New York, 1948. MR 8, 514.
  • [3] R. Courant and D. Hilbert, Methoden der mathematischen Physik. Vol. 1, Springer, Berlin, 1931; English transl., Interscience, New York, 1953. MR 16, 426.
  • [4] N. Dunford and J. T. Schwartz, Linear operators. II: Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181. MR 0188745 (32:6181)
  • [5] E. Hille, Lectures on ordinary differential equations, Addison-Wesley, Reading, Mass., 1969. MR 40 #2939. MR 0249698 (40:2939)
  • [6] S. Janczewsky, Oscillation theorems for the differential boundary value problems of the fourth order, Ann. of Math. (2) 29 (1928), 521-542. MR 1502859
  • [7] R. Jentzsch, Über Integralgleichungen mit positiven kern, J. Reine Angew. Math. 141 (1912), 235-244.
  • [8] K. Kreith, Comparison theorems for constrained rods, SIAM Rev. 6 (1964), 31-36. MR 28 #4172. MR 0160963 (28:4172)
  • [9] W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325-377. MR 21 #1429. MR 0102639 (21:1429)
  • [10] F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Akad. Kiadó, Budapest, 1953; English transl., Ungar, New York, 1955. MR 15, 132; 17, 175. MR 0056821 (15:132d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

Keywords: Eigenvalue, eigenfunctions, oscillation theory, fourth order linear differential equations, boundary value problems, vibrations, beams, Prüfer transformation, comparison theorems
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society