Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Homeomorphisms between Banach spaces


Author: Roy Plastock
Journal: Trans. Amer. Math. Soc. 200 (1974), 169-183
MSC: Primary 58C15; Secondary 57A20
MathSciNet review: 0356122
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the problem of finding precise conditions for a map $ F$ between two Banach spaces $ X,Y$ to be a global homeomorphism.

Using methods from covering space theory we reduce the global homeomorphism problem to one of finding conditions for a local homeomorphism to satisfy the ``line lifting property.'' This property is then shown to be equivalent to a limiting condition which we designate by $ (L)$. Thus we finally show that a local homeomorphism is a global homeomorphism if and only if $ (L)$ is satisfied. In particular we show that if a local homeomorphism is

(i) proper (Banach-Mazur) or

(ii) $ \int_0^\infty {{{\inf }_{\vert\vert x\vert\vert \leqslant s}}} 1/\vert\vert{[F'(x)]^{ - 1}}\vert\vert ds = \infty $ (Hadamard-Levy), then $ (L)$ is satisfied. Other analytic conditions are also given.


References [Enhancements On Off] (What's this?)

  • [1] S. Banach and S. Mazur, Über mehrdeutige stetige abbildungen, Studia Math. 5 (1934), 174-178.
  • [2] M. S. Berger and M. S. Berger, Perspectives in nonlinearity. An introduction to nonlinear analysis, Benjamin, New York, 1968. MR 40 #4971. MR 0251744 (40:4971)
  • [3] S. Bochner and W. T. Martin, Several complex variables, Princeton Math. Series, vol. 10, Princeton Univ. Press, Princeton, N.J., 1948. MR 10, 366. MR 0027863 (10:366a)
  • [4] F. E. Browder, Covering spaces, fiber spaces and local homeomorphisms, Duke Math. J. 21 (1954), 329-336. MR 15, 978. MR 0062431 (15:978a)
  • [5] R. Cacciopoli, Sugli eleminti uniti delle transformazioni funzionali, Rend. Sem. Mat. Univ. Padova 3 (1932), 1-15.
  • [6] H. Cartan, Sur les transformations localement topologiques, Acta Litt. Sci. Szeged 6 (1933), 85-104.
  • [7] a) N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • 1. b) Linear operators. II: Spectral theory. Self-adjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181.
  • [8] N. V. Efimov, Differential criteria for homeomorphisms of certain mappings with applications to the theory of surfaces, Mat. Sb. 76 (118) (1968), 499-512 = Math. USSR Sb. 5 (1968), 475-488. MR 37 #5821. MR 0230258 (37:5821)
  • [9] W. B. Gordon, On the diffeomorphisms of Euclidean space, Amer. Math. Monthly 79 (1972), 755-759. MR 0305418 (46:4548)
  • [10] J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1904), 71-84. MR 1504541
  • [11] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 #1270. MR 0171038 (30:1270)
  • [12] F. John, On quasi-isometric mappings. I, Comm. Pure Appl. Math. 21 (1968), 77-110. MR 36 #5716. MR 0222666 (36:5716)
  • [13] M. A. Lavrent'ev, Sur une critère differentiel des transformations homéomorphes des domaines à trois dimensions, Dokl. Akad. Nauk SSSR 22 (1938), 241-242.
  • [14] P. Levy, Sur les fonctions des lignes implicites, Bull. Soc. Math. France 48 (1920), 13-27. MR 1504790
  • [15] R. Plastock, A note on surjectivity of nonlinear maps (manuscript).
  • [16] V. A. Zorič, A theorem of M. A. Lavrent'ev on quasiconformal space maps, Mat. Sb. 74 (116) (1967), 417-433 = Math. USSR Sb. 3 (1967), 389-403. MR 36 #6617. MR 0223569 (36:6617)
  • [17] R. Hermann, Differential geometry and the calculus of variations, Math. in Sci. and Engineering, vol. 49, Academic Press, New York, 1968. MR 38 #1635. MR 0233313 (38:1635)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58C15, 57A20

Retrieve articles in all journals with MSC: 58C15, 57A20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0356122-6
Keywords: Covering space
Article copyright: © Copyright 1974 American Mathematical Society