Coproducts and some universal ring constructions

Author:
George M. Bergman

Journal:
Trans. Amer. Math. Soc. **200** (1974), 33-88

MSC:
Primary 16A64

DOI:
https://doi.org/10.1090/S0002-9947-1974-0357503-7

MathSciNet review:
0357503

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an algebra over a field , and be two nonzero finitely generated projective -modules. By adjoining further generators and relations to , one can obtain an extension of having a *universal* isomorphism of modules, .

We here study this and several similar constuctions, including (given a single finitely generated projective -module ) the extension of having a universal idempotent module-endomorphism , and (given a positive integer ) the -algebra with a universal -algebra homomorphism of into its matrix ring, .

A trick involving matrix rings allows us to reduce the study of each of these constructions to that of a coproduct of rings over a semisimple ring ( , and respectively in the above cases), and hence to apply the theory of such coproducts. As in that theory, we find that the homological properties of the construction are extremely good: The global dimension of is the same as that of unless this is 0, in which case it can increase to 1, and the semigroup of isomorphism classes of finitely generated projective modules is changed only in the obvious fashion; e.g., in the first case mentioned, by the adjunction of the relation .

These results allow one to construct a large number of unusual examples.

We discuss the problem of obtaining similar results for some related constructions: the adjunction to of a universal inverse to a given homomorphism of finitely generated projective modules, , and the formation of the factor-ring by the trace ideal of a given finitely generated projective -module (in other words, setting ).

The idea for a category-theoretic generalization of the ideas of the paper is also sketched.

**[1]**S. A. Amitsur,*Embeddings in matrix rings*, Pacific J. Math.**36**(1971), 21–29. MR**0276270****[2]**Hyman Bass,*Algebraic 𝐾-theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0249491****[3]**George M. Bergman,*Hereditary commutative rings and centres of hereditary rings*, Proc. London Math. Soc. (3)**23**(1971), 214–236. MR**0309918**, https://doi.org/10.1112/plms/s3-23.2.214**[4]**-,*Infinite multiplication of ideals in -hereditary rings*, J. Algebra**34**(1973), 56-70. MR**46**#9085.**[5]**George M. Bergman,*Rational relations and rational identities in division rings. I*, J. Algebra**43**(1976), no. 1, 252–266. MR**0432697**, https://doi.org/10.1016/0021-8693(76)90159-9

George Bergman,*Rational relations and rational identities in division rings. II*, J. Algebra**43**(1976), no. 1, 267–297. MR**0432698**, https://doi.org/10.1016/0021-8693(76)90160-5**[6]**-,*Some examples in p.i. ring theory*, Israel J. Math. (to appear).**[7]**George M. Bergman,*Modules over coproducts of rings*, Trans. Amer. Math. Soc.**200**(1974), 1–32. MR**0357502**, https://doi.org/10.1090/S0002-9947-1974-0357502-5**[8]**-,*The diamond lemma for ring theory*(to appear).**[9]**George M. Bergman and Lance W. Small,*P.I. degrees and prime ideals*, J. Algebra**33**(1975), 435–462. MR**0360682**, https://doi.org/10.1016/0021-8693(75)90112-X**[10]**A. J. Bowtell,*On a question of Mal′cev*, J. Algebra**7**(1967), 126–139. MR**0230750**, https://doi.org/10.1016/0021-8693(67)90071-3**[11]**W. Edwin Clark and George M. Bergman,*The automorphism class group of the category of rings*, J. Algebra**24**(1973), 80–99. MR**0311648**, https://doi.org/10.1016/0021-8693(73)90154-3**[12]**P. M. Cohn,*Universal algebra*, Harper & Row, Publishers, New York-London, 1965. MR**0175948****[13]**P. M. Cohn,*Some remarks on the invariant basis property*, Topology**5**(1966), 215–228. MR**0197511**, https://doi.org/10.1016/0040-9383(66)90006-1**[14]**P. M. Cohn,*The embedding of firs in skew fields*, Proc. London Math. Soc. (3)**23**(1971), 193–213. MR**0297814**, https://doi.org/10.1112/plms/s3-23.2.193**[15]**P. M. Cohn,*Dependence in rings. II. The dependence number*, Trans. Amer. Math. Soc.**135**(1969), 267–279. MR**0279122**, https://doi.org/10.1090/S0002-9947-1969-0279122-1**[16]**P. M. Cohn,*Free rings and their relations*, Academic Press, London-New York, 1971. London Mathematical Society Monographs, No. 2. MR**0371938****[17]**-,*Rings of fractions*, Lecture Notes, University of Alberta, Edmonton, Alberta, Canada, 1972.**[18]**-,*Localization in semifirs*(to appear).**[19]**Samuel Eilenberg, Hirosi Nagao, and Tadasi Nakayama,*On the dimension of modules and algebras. IV. Dimension of residue rings of hereditary rings*, Nagoya Math. J.**10**(1956), 87–95. MR**0078981****[20]**K. L. Fields,*On the global dimension of residue rings*, Pacific J. Math.**32**(1970), 345–349. MR**0271166****[21]**P. Freyd,*Algebra valued functors in general and tensor products in particular*, Colloq. Math.**14**(1966), 89–106. MR**0195920****[22]**John R. Isbell,*Epimorphisms and dominions. IV*, J. London Math. Soc. (2)**1**(1969), 265–273. MR**0257120**, https://doi.org/10.1112/jlms/s2-1.1.265**[23]**Abraham A. Klein,*Rings nonembeddable in fields with multiplicative semi-groups embeddable in groups*, J. Algebra**7**(1967), 100–125. MR**0230749**, https://doi.org/10.1016/0021-8693(67)90070-1**[24]**Abraham A. Klein,*A remark concerning embeddability of rings in fields*, J. Algebra**21**(1972), 271–274. MR**0299622**, https://doi.org/10.1016/0021-8693(72)90022-1**[25]**W. G. Leavitt,*Modules without invariant basis number*, Proc. Amer. Math. Soc.**8**(1957), 322–328. MR**0083986**, https://doi.org/10.1090/S0002-9939-1957-0083986-1**[26]**Saunders Mac Lane,*Categories for the working mathematician*, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR**1712872****[27]**A. Malcev,*Über die Einbettung von assoziativen Systemen in Gruppen*, Rec. Math. [Mat. Sbornik] N.S.**6 (48)**(1939), 331–336 (Russian, with German summary). MR**0002152****[28]**Barry Mitchell,*Rings with several objects*, Advances in Math.**8**(1972), 1–161. MR**0294454**, https://doi.org/10.1016/0001-8708(72)90002-3**[29]**L. Silver,*Noncommutative localizations and applications*, J. Algebra**7**(1967), 44–76. MR**0217114**, https://doi.org/10.1016/0021-8693(67)90067-1**[30]**L. A. Skornjakov,*On Cohn rings*, Algebra i Logika Sem.**4**(1965), no. 3, 5–30 (Russian). MR**0193105****[31]**Lance W. Small,*Hereditary rings*, Proc. Nat. Acad. Sci. U.S.A.**55**(1966), 25–27. MR**0186720****[32]**George Maxwell,*Axioms for finite and infinite classical Lie algebras*, J. Algebra**32**(1974), no. 3, 467–475. MR**0389998**, https://doi.org/10.1016/0021-8693(74)90152-5**[33]**Friedhelm Waldhausen,*Whitehead groups of generalized free products*, Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 155–179. Lecture Notes in Math., Vol. 342. MR**0370576**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16A64

Retrieve articles in all journals with MSC: 16A64

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1974-0357503-7

Keywords:
Universal module homomorphism (isomorphism),
finitely generated projective module,
matrix ring,
coproduct of rings,
representable functor,
semigroup of -modules (resp. projective -modules) under ``",
global dimension,
-fir,
localization,
trace ideal of a projective module,
-linear category

Article copyright:
© Copyright 1974
American Mathematical Society