Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Topological semigroups and representations. I


Author: James C. S. Wong
Journal: Trans. Amer. Math. Soc. 200 (1974), 89-109
MSC: Primary 22A20
DOI: https://doi.org/10.1090/S0002-9947-1974-0369604-8
MathSciNet review: 0369604
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a topological semigroup (separately continuous multiplication) with identity and $ W(S)$ the Banach space of all weakly almost periodic functions on $ S$. It is well known that if $ S = G$ is a locally compact group, then $ W(G)$ always has a (unique) invariant mean. In other words, there exists $ m \in W{(G)^ \ast }$ such that $ \vert\vert m\vert\vert = m(1) = 1$ and $ m({l_s}f) = m({r_s}f) = m(f)$ for any $ s \in G,f \in W(G)$ where $ {l_s}f(t) = f(st)$ and $ {r_s}f(t) = f(ts),t \in S$ The main purpose of this paper is to present several characterisations (functional analytic and algebraic) of the existence of a left (right) invariant mean on $ W(S)$ In particular, we prove that $ W(S)$ has a left (right) invariant mean iff a certain compact topological semigroup $ p{(S)^\omega }$ (to be defined) associated with $ S$ contains a right (left) zero. Other results in this direction are also obtained.


References [Enhancements On Off] (What's this?)

  • [1] L. N. Argabright, Invariant means and fixed points: A sequel to Mitchell's paper, Trans. Amer. Math. Soc. 130 (1968), 127-130. MR 36 #667. MR 0217578 (36:667)
  • [2] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544. MR 19, 1067. MR 0092128 (19:1067c)
  • [3] K. deLeeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97. MR 24 #A1632. MR 0131784 (24:A1632)
  • [4] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [5] W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240. MR 12, 112. MR 0036455 (12:112a)
  • [6] E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177-197; Errata and addendum, ibid. 20 (1967), 113. MR 33 #5760; 36 #1561. MR 0197595 (33:5760)
  • [7] -, Extremely amenable semigroups. II, Math. Scand. 20 (1967), 93-113. MR 35 #3422. MR 0212551 (35:3422)
  • [8] -, Functional analytic properties of extremely amenable semigroups, Trans. Amer. Math. Soc. 137 (1969), 53-75. MR 39 #765. MR 0239408 (39:765)
  • [9] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand Reinhold, New York, 1969. MR 40 #4776. MR 0251549 (40:4776)
  • [10] R. D. Holmes and A. Lau, Non-expansive actions of topological semigroups and fixed points, J. London Math. Soc. (2) 5 (1972), 330-336. MR 0313895 (47:2447)
  • [11] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [12] A. Lau, Invariant means on almost periodic functions and fixed point properties, Rocky Mountain J. Math. 3 (1973), 69-76. MR 0324313 (48:2665)
  • [13] T. Mitchell, Constant functions and left invariant means on semigroups, Trans. Amer. Math. Soc. 119 (1965), 244-261. MR 33 #1743. MR 0193523 (33:1743)
  • [14] -, Fixed points and multiplicative left invariant means, Trans. Amer. Math. Soc. 122 (1966), 195-202. MR 32 #7662. MR 0190249 (32:7662)
  • [15] -, Function algebras, means and fixed points, Trans. Amer. Math. Soc. 130 (1968), 117-126. MR 36 #666. MR 0217577 (36:666)
  • [16] -, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630-641. MR 42 #5245. MR 0270356 (42:5245)
  • [17] -, Fixed points of reversible semigroups of non-expansive mappings, Kōdai Math. Sem. Rep. 22 (1970), 322-323. MR 42 #2316. MR 0267414 (42:2316)
  • [18] R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, Princeton, N. J., 1966. MR 33 #1690. MR 0193470 (33:1690)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22A20

Retrieve articles in all journals with MSC: 22A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1974-0369604-8
Keywords: Topological semigroups, compact semigroups, convex semigroups, almost periodic functions, almost periodic compactifications, invariant means, representations of topological semigroups, fixed point properties
Article copyright: © Copyright 1974 American Mathematical Society

American Mathematical Society