Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Existence and stability for partial functional differential equations


Authors: C. C. Travis and G. F. Webb
Journal: Trans. Amer. Math. Soc. 200 (1974), 395-418
MSC: Primary 34G05; Secondary 35R10, 47H15
MathSciNet review: 0382808
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The existence and stability properties of a class of partial functional differential equations are investigated. The problem is formulated as an abstract ordinary functional differential equation of the form $ du(t)/dt = Au(t) + F({u_t})$, where $ A$ is the infinitesimal generator of a strongly continuous semigroup of linear operators $ T(t),t \geqslant 0$, on a Banach space $ X$ and $ F$ is a Lipschitz operator from $ C = C([ - r,0];X)$ to $ X$. The solutions are studied as a semigroup of linear or nonlinear operators on $ C$. In the case that $ F$ has Lipschitz constant $ L$ and $ \vert T(t)\vert \leqslant {e^{\omega t}}$, then the asymptotic stability of the solutions is demonstrated when $ \omega + L < 0$. Exact regions of stability are determined for some equations where $ F$ is linear.


References [Enhancements On Off] (What's this?)

  • [1] H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Functional Analysis 9 (1972), 63-74. MR 45 #2529. MR 0293452 (45:2529)
  • [2] P. Butzer and H. Berens, Semi-groups of operators and approximation, Die Grundlehren der math. Wissenschaften, Band 145, Springer-Verlag, New York, 1967. MR 37 #5588. MR 0230022 (37:5588)
  • [3] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298. MR 44 #4563. MR 0287357 (44:4563)
  • [4] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [5] J. Hale, Linear functional differential equations with constant coefficients, Contributions to Differential Equations 2 (1963), 291-317. MR 27 #2700. MR 0152725 (27:2700)
  • [6] -, Functional differential equations, Appl. Math. Sciences, vol. 3, Springer-Verlag, New York, 1971. MR 0466837 (57:6711)
  • [7] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [8] T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
  • [9] A. Pazy, On the differentiability and compactness of semi-groups of linear operators, J. Math. Mech. 17 (1968), 1131-1141. MR 37 #6797. MR 0231242 (37:6797)
  • [10] H. Royden, Real analysis, Macmillan, New York, 1963. MR 27 #1540. MR 0151555 (27:1540)
  • [11] I. E. Segal, Non-linear semi-groups, Ann. of Math. (2) 78 (1963), 339-364. MR 27 #2879. MR 0152908 (27:2879)
  • [12] A. Taylor, Introduction to functional analysis, Wiley, New York, 1967. MR 0098966 (20:5411)
  • [13] G. Webb, Autonomous nonlinear functional differential equations and nonlinear semi-groups, J. Math. Anal. Appl. 46 (1974), 1-12. MR 0348224 (50:722)
  • [14] K. Yosida, Functional analysis, 2nd ed., Die Grundlehren der math. Wissenschaften, Band 123, Springer-Verlag, Berlin and New York, 1968. MR 39 #741. MR 0239384 (39:741)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34G05, 35R10, 47H15

Retrieve articles in all journals with MSC: 34G05, 35R10, 47H15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0382808-3
Article copyright: © Copyright 1974 American Mathematical Society