Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Associated and perspective simplexes


Author: Leon Gerber
Journal: Trans. Amer. Math. Soc. 201 (1975), 43-55
MSC: Primary 50B10
DOI: https://doi.org/10.1090/S0002-9947-1975-0355788-5
MathSciNet review: 0355788
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A set of $ n + 1$ lines in $ n$-space such that any $ ({\text{n}} - 2)$-dimensional flat which meets $ n$ of the lines also meets the remaining line is said to be an associated set of lines. Two Simplexes are associated if the joins of corresponding vertices are associated. A simple criterion is given for simplexes to be associated and an analogous one for Simplexes to be perspective. These are used to give a brief proof of the following generalization of the theorem of Pappus.

Let $ \mathcal{A}$ and $ \mathcal{B}$ be $ n$-simplexes and let $ p$ be a permutation on the vertices of $ \mathcal{B}$. If $ \mathcal{A}$ and $ \mathcal{B}$ are associated (respectively perspective) and $ \mathcal{A}$ and $ \mathcal{B}p$ are associated (perspective) then $ \mathcal{A}$ and $ \mathcal{B}{p^k}$ are associated (perspective) for any integer $ k$. Very short proofs are given of extensions to $ n$-dimensions of many theorems from Neuberg's famous Memoir sur le Tétraèdre, such as: the altitudes of a simplex are associated.


References [Enhancements On Off] (What's this?)

  • [1] H. F. Baker, Principles of geometry. Vol. IV, Cambridge Univ. Press, New York, 1940.
  • [2] L. Berzolari, Sui sistemi di $ n + 1$ rette dello spazio ad $ n$ dimensioni situati in posizione di Schläfli, Rend. Circ. Mat. Palermo (2) 20 (1905), 229-247.
  • [3] N. A. Court, Modern pure solid geometry, 2nd ed., Chelsea, New York, 1964. MR 0172153 (30:2379)
  • [4] H. S. M. Coxeter, Introduction to geometry, Wiley, New York, 1961. MR 23 #A1251. MR 0123930 (23:A1251)
  • [5] H. S. M. Coxeter and J. A. Todd, Solution of advanced problem 4079, Amer. Math. Monthly 51 (1944), 599-600. MR 1526100
  • [6] L. Gerber, Spheres tangent to all the faces of a simplex, J. Combinatorial Theory 12 (1972), 453-456. MR 45 #7607. MR 0298555 (45:7607)
  • [7] -, The altitudes of a simplex are associated, Math. Mag. 46 (1973), 155-157. MR 0319034 (47:7580)
  • [8] H. Hanani, On a point of minimum sum of distances-squares from the faces of a simplex, Riveon Lematematika 7 (1954), 10-12. MR 15, 451. (Hebrew) MR 0058995 (15:461i)
  • [9] D. Hilbert and S. Cohn-Vossen, Geometry and the imagination, Springer-Berlin, 1932; English transl., Chelsea, New York, 1952. MR 13, 766. MR 0046650 (13:766c)
  • [10] S. R. Mandan, Altitudes of a general $ n$-simplex, J. Austral. Math. Soc. 5 (1965), 409-415. MR 32 #6277. MR 0188845 (32:6277)
  • [11] -, Desargues' theorem in $ n$-space, J. Austral. Math. Soc. 1 (1959/60), 311-318. MR 23 #A4045. MR 0126751 (23:A4045)
  • [12] -, Isodynamic & isogonic simplexes, Ann. Mat. Pura Appl. (4) 53 (1961), 45-55. MR 23 #A1253. MR 0123932 (23:A1253)
  • [13] J. Neuberg, Memoir sur le tétraèdre, Académie Royale des Sciences des lettres et des beaux-arts de Belgique, Mémoires couronnés 37 (1884), 1-72.
  • [14] -, Über hyperboloidische Würfe, Arch. Math. Phys. (3) 12 (1907), 297-305.
  • [15] L. Schläfli, Erweiterung des Satzes, das zwei polare Dreiecke perspectivisch liegen, auf eine beliebige Zahl von Dimensionen, J. Reine Angew. Math. 65 (1866), 189-197 (= Gesammelte mathematische A bhandlungen. Bd. III, Verlag Birkhäuser, Basel, 1956, pp. 9-20. MR 17, 814).
  • [16] H. M. Taylor, Solution of question 15886, Educational Times Reprints (2) 10 (1906), 48.
  • [17] V. Thébault, Parmi les belles figures de la géométrie dans l'espace, Librairie Vuibert, Paris, 1955. MR 16, 737.
  • [18] O. Veblen and W. J. Young, Projective geometry, Blaisdell, New York, 1938.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 50B10

Retrieve articles in all journals with MSC: 50B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0355788-5
Keywords: Associated lines, hyperbolic group of lines, perspective, simplex, orthological simplexes, polar simplex, Pappus theorem
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society