Conservative dynamical systems involving strong forces
Author:
William B. Gordon
Journal:
Trans. Amer. Math. Soc. 204 (1975), 113135
MSC:
Primary 58F05; Secondary 58E10
MathSciNet review:
0377983
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider conservative dynamical systems associated with potentials which have singularities at a set as . It is shown that various ``action'' integrals satisfy Condition of Palais and Smale provided that the potential satisfy a certain strong force (SF) condition. Hence, e.g., we establish the existence in SF systems of periodic trajectories which wind around and have arbitrary given topological (homotopy) type and which have arbitrary given period, and also periodic trajectories which make arbitrarily tight loops around . Similar results are also obtained concerning the existence of trajectories which wind around and join two given points. The SF condition is shown to be closely related to the completeness (in the riemannian sense) of certain Jacobi metrics associated with the potential , and this fact permits the use of the standard results of riemannian geometry in the analysis of SF systems. The SF condition excludes the gravitational case, and the action integrals do not satisfy the PalaisSmale condition in the gravitational case. The Jacobi metrics associated with gravitational potentials are not complete. For SF systems there exist trajectories which join two given points and make arbitrarily tight loops around , and this is not the case in the gravitational two body problem. On the other hand, for SF systems any smooth family of periodic trajectories ( fixed) is bounded away from , and this also is not the case for gravitational systems. Thus the definition of the SF condition is ``well motivated", and leads to the disclosure of certain differences between the behavior of SF systems and gravitational (and other weak force) systems.
 [1]
L.
È. Èl′sgol′c, Calculus of
variations, Pergamon Press Ltd., LondonParisFrankfurt,
AddisonWesley Publishing Co., Inc., Reading, Mass., 1962. MR 0133032
(24 #A2868)
 [2]
Melvyn
S. Berger, On periodic solutions of second order Hamiltonian
systems. I, J. Math. Anal. Appl. 29 (1970),
512–522. MR 0257470
(41 #2121)
 [3]
, Multiple solutions of nonlinear operator equations arising from the calculus of variations, Proc. Sympos. Pure Math., vol. 18, part 1, Amer. Math. Soc., Providence, R. I., 1970, pp. 1027. MR 42 #5112.
 [4]
Melvyn
S. Berger, Periodic solutions of second order dynamical systems and
isoperimetric variational problems, Amer. J. Math. 93
(1971), 1–10. MR 0276848
(43 #2588)
 [5]
I.
M. Gelfand and S.
V. Fomin, Calculus of variations, Revised English edition
translated and edited by Richard A. Silverman, PrenticeHall, Inc.,
Englewood Cliffs, N.J., 1963. MR 0160139
(28 #3353)
 [6]
William
B. Gordon, On the relation between period and energy in periodic
dynamical systems, J. Math. Mech. 19 (1969/1970),
111–114. MR 0245930
(39 #7236)
 [7]
William
B. Gordon, A theorem on the existence of periodic solutions to
Hamiltonian systems with convex potential, J. Differential Equations
10 (1971), 324–335. MR 0292113
(45 #1200)
 [8]
William
B. Gordon, Periodic solutions to Hamiltonian systems with
infinitely deep potential wells, Ordinary differential equations
(Proc. NRLMRC Conf., Math. Res. Center, Naval Res. Lab., Washington, D.C.,
1971) Academic Press, New York, 1972, pp. 399–403. MR 0478224
(57 #17710)
 [9]
William
B. Gordon, Physical variational principles which
satisfy the PalaisSmale condition, Bull. Amer.
Math. Soc. 78
(1972), 712–716. MR 0299031
(45 #8080), http://dx.doi.org/10.1090/S000299041972129987
 [10]
William
B. Gordon, An analytical criterion for the
completeness of Riemannian manifolds, Proc.
Amer. Math. Soc. 37
(1973), 221–225. MR 0307112
(46 #6233), http://dx.doi.org/10.1090/S00029939197303071125
 [11]
William
B. Gordon, On the equivalence of second order systems occurring in
the calculus of variations, Arch. Rational Mech. Anal.
50 (1973), 118–126. MR 0336515
(49 #1289)
 [12]
William
B. Gordon, The existence of geodesics joining two given
points, J. Differential Geometry 9 (1974),
443–450. MR 0339272
(49 #4032)
 [13]
J.
Milnor, Morse theory, Based on lecture notes by M. Spivak and
R. Wells. Annals of Mathematics Studies, No. 51, Princeton University
Press, Princeton, N.J., 1963. MR 0163331
(29 #634)
 [14]
Richard
S. Palais, Morse theory on Hilbert manifolds, Topology
2 (1963), 299–340. MR 0158410
(28 #1633)
 [15]
Richard
S. Palais, Foundations of global nonlinear analysis, W. A.
Benjamin, Inc., New YorkAmsterdam, 1968. MR 0248880
(40 #2130)
 [16]
Richard
S. Palais, Critical point theory and the minimax principle,
Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif, 1968),
Amer. Math. Soc., Providence, R.I., 1970, pp. 185–212. MR 0264712
(41 #9303)
 [17]
Richard
S. Palais, Seminar on the AtiyahSinger index theorem, With
contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih
and R. Solovay. Annals of Mathematics Studies, No. 57, Princeton University
Press, Princeton, N.J., 1965. MR 0198494
(33 #6649)
 [18]
R.
S. Palais and S.
Smale, A generalized Morse theory,
Bull. Amer. Math. Soc. 70 (1964), 165–172. MR 0158411
(28 #1634), http://dx.doi.org/10.1090/S000299041964110624
 [19]
Frigyes
Riesz and Béla
Sz.Nagy, Functional analysis, Frederick Ungar Publishing Co.,
New York, 1955. Translated by Leo F. Boron. MR 0071727
(17,175i)
 [20]
Jacob
T. Schwartz, Generalizing the LusternikSchnirelman theory of
critical points, Comm. Pure Appl. Math. 17 (1964),
307–315. MR 0166796
(29 #4069)
 [21]
Frank
W. Warner, Foundations of differentiable manifolds and Lie
groups, Scott, Foresman and Co., Glenview, Ill.London, 1971. MR 0295244
(45 #4312)
 [1]
 N. I. Ahiezer, The calculus of variations, GITTL, Moscow, 1955; English transl., Blaisdell, Waltham, Mass., 1962. MR 17, 861; 25 #5414. MR 0133032 (24:A2868)
 [2]
 M. S. Berger, On periodic solutions of second order Hamiltonian systems. I, J. Math. Anal. Appl. 29 (1970), 512522. MR 41 #2121. MR 0257470 (41:2121)
 [3]
 , Multiple solutions of nonlinear operator equations arising from the calculus of variations, Proc. Sympos. Pure Math., vol. 18, part 1, Amer. Math. Soc., Providence, R. I., 1970, pp. 1027. MR 42 #5112.
 [4]
 , Periodic solutions of second order dynamical systems and isoperimetric variational problems, Amer. J. Math. 93 (1971), 110. MR 43 #2588. MR 0276848 (43:2588)
 [5]
 I. M. Gel'fand and S. V. Fomin, Calculus of variations, Fizmatgiz, Moscow, 1961; English transl., PrenticeHall, Englewood Cliffs, N. J., 1963. MR 28 #3352; #3353. MR 0160139 (28:3353)
 [6]
 W. B. Gordon, On the relation between period and energy in periodic dynamical systems, J. Math. Mech. 19 (1969/70), 111114. MR 39 #7236. MR 0245930 (39:7236)
 [7]
 , A theorem on the existence of periodic solutions to Hamiltonian systems with convex potential, J. Differential Equations 10 (1971), 324335. MR 45 #1200. MR 0292113 (45:1200)
 [8]
 , Periodic solutions to hamiltonian systems with infinitely deep potential wells, Ordinary Differential Equations, Academic Press, New York, 1972, pp. 399403. MR 0478224 (57:17710)
 [9]
 , Physical variational principles which satisfy the PalaisSmale condition, Bull. Amer. Math. Soc. 78 (1972), 712716. MR 45 #8080. MR 0299031 (45:8080)
 [10]
 , An analytical criterion for the completeness of riemannian manifolds, Proc. Amer. Math. Soc. 37 (1973), 221225; Corrections, ibid. 45 (1974), 130131. MR 0307112 (46:6233)
 [11]
 , On the equivalence of second order systems occuring in the calculus of variations, Arch. Rational Mech. Anal. 50 (1973), 118126. MR 0336515 (49:1289)
 [12]
 , On the existence of geodesics joining two given points, J. Differential Geometry 9 (1974), 443450. MR 0339272 (49:4032)
 [13]
 J. Milnor, Morse theory, Ann. of Math. Studies, no. 51, Princeton Univ. Press, Princeton, N. J., 1963. MR 29 #634. MR 0163331 (29:634)
 [14]
 R. S. Palais, Morse theory on hilbert manifolds, Topology 2 (1963), 299340. MR 28 #1633. MR 0158410 (28:1633)
 [15]
 R. S. Palais, Foundations of global nonlinear analysis, Benjamin, New York, 1968. MR 40 #2130. MR 0248880 (40:2130)
 [16]
 , Critical point theory and the minimax principle, Proc. Sympos. Pure Math., vol. 15, Amer. Math. Soc., Providence, R. I., 1970, pp. 185212. MR 41 #9303. MR 0264712 (41:9303)
 [17]
 R. S. Palais et al., Seminar on the AtiyahSinger index theorem, Ann. of Math. Studies, no. 57, Princeton Univ. Press, Princeton, N. J., 1965. MR 33 #6649. MR 0198494 (33:6649)
 [18]
 R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165171. MR 0158411 (28:1634)
 [19]
 F. Riesz and B. Sz.Nagy, Le
ccons d'analyse fonctionnelle, 2ième éd., Akad. Kiadó, Budapest, 1953; English transl., Functional analysis, Ungar, New York, 1955. MR 15, 132; 17, 175. MR 0071727 (17:175i)
 [20]
 J. T. Schwartz, Generalizing the LusternikSchnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307315. MR 29 #4069. MR 0166796 (29:4069)
 [21]
 F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman, Glenview, I11., 1971. MR 45 #4312. MR 0295244 (45:4312)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
58F05,
58E10
Retrieve articles in all journals
with MSC:
58F05,
58E10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197503779831
PII:
S 00029947(1975)03779831
Article copyright:
© Copyright 1975
American Mathematical Society
