Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On rearrangements of Vilenkin-Fourier series which preserve almost everywhere convergence


Authors: J. A. Gosselin and W. S. Young
Journal: Trans. Amer. Math. Soc. 209 (1975), 157-174
MSC: Primary 43A50; Secondary 42A56
DOI: https://doi.org/10.1090/S0002-9947-1975-0399756-6
MathSciNet review: 0399756
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that the partial sums of Vilenkin-Fourier series of $ {L^q}$ functions $ (q > 1)$ converge a.e. In this paper we establish the $ {L^2}$ result for a class of rearrangements of the Vilenkin-Fourier series, and the $ {L^q}$ result $ (1 < q < 2)$ for a subclass of rearrangements. In the case of the Walsh-Fourier series, these classes include the Kaczmarz rearrangement studied by L. A. Balashov. The $ {L^2}$ result for the Kaczmarz rearrangement was first proved by K. H. Moon. The techniques of proof involve a modification of the Carleson-Hunt method and estimates on maximal functions of the Hardy-Littlewood type that arise from these rearrangements.


References [Enhancements On Off] (What's this?)

  • [1] L. A. Balašov, Series with respect to the Walsh system with monotone coefficients, Sibirsk. Mat. Ž. 12 (1971), 25-39 = Siberian Math. J. 12 (1971), 18-28. MR 44 #1982. MR 0284758 (44:1982)
  • [2] A. P. Calderón and A. Zygmund, A note on the interpolation of sublinear operations, Amer. J. Math. 78 (1956), 282-288. MR 18, 586. MR 0082647 (18:586d)
  • [3] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta. Math. 116 (1966), 135-157. MR 33 #7774. MR 0199631 (33:7774)
  • [4] K. L. Chung, A course in probability theory, Harcourt, Brace & World, New York, 1968. MR 37 #4842. MR 0229268 (37:4842)
  • [5] J. A. Gosselin, A. e. convergence of Vilenkin-Fourier series, Trans. Amer. Math. Soc. 185 (1973), 345-370. MR 0352883 (50:5369)
  • [6] R. A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235-255. MR 38 #6296. MR 0238019 (38:6296)
  • [7] -, Almost everywhere convergence of Walsh-Fourier series of $ {L^2}$ functions, Proc. Internat. Congress Math. (Nice, 1970), vol. 2, Gauthier-Villars, Paris, 1971, pp. 655-661.
  • [8] R. A. Hunt and M. H. Taibleson, Almost everywhere convergence of Fourier series on the ring of integers of a local field, SIAM J. Math. Anal. 2 (1971), 607-625. MR 47 #718. MR 0312156 (47:718)
  • [9] K. H. Moon, Maximal functions related to certain linear operators, Doctoral Dissertation, Purdue University, West Lafayette, Ind., 1972.
  • [10] P. Sjölin, An inequality of Paley and convergence a. e. of Walsh-Fourier series, Ark. Mat. 7 (1969), 551-570. MR 39 #3222. MR 0241885 (39:3222)
  • [11] E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1970. MR 40 #6176. MR 0252961 (40:6176)
  • [12] N. Ja. Vilenkin, On a class of complete orthonormal systems, Amer. Math. Soc. Transl. (2) 28 (1963), 1-35. MR 27 #4001. MR 0154042 (27:4001)
  • [13] D. Waterman, $ W$-systems are the Walsh functions, Bull. Amer. Math. Soc. 75 (1969), 139-142. MR 38 #2514. MR 0234196 (38:2514)
  • [14] W. S. Young, Maximal inequalities and almost everywhere convergence, Doctoral Dissertation, Purdue University, West Lafayette, Ind., 1973.
  • [15] W.-S. Young, On rearrangements of Walsh-Fourier series and Hardy-Littlewood type maximal inequalities, Bull. Amer. Math. Soc. 80 (1974), 490-494. MR 0333571 (48:11896)
  • [16] -, On the a. e. convergence of Walsh-Kaczmarz-Fourier series, Proc. Amer. Math. Soc. 44 (1974), 353-358. MR 0350310 (50:2803)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A50, 42A56

Retrieve articles in all journals with MSC: 43A50, 42A56


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0399756-6
Keywords: Hardy-Littlewood maximal function, maximal $ n$th partial sum operator, conditional expectation, weak type inequalities
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society