The similarity orbit of a normal operator

Author:
L. A. Fialkow

Journal:
Trans. Amer. Math. Soc. **210** (1975), 129-137

MSC:
Primary 47A55; Secondary 47B15

DOI:
https://doi.org/10.1090/S0002-9947-1975-0374956-X

MathSciNet review:
0374956

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is a bounded normal operator on a separable Hilbert space , let denote the similarity orbit of in and let denote the set of all compact perturbations of elements of . It is proved that is norm closed in if and only if the spectrum (essential spectrum) of is finite. If the essential spectrum of is infinite and is a normal operator whose spectrum is connected and contains that of , then is in the closure of . If the spectrum of is connected, this result characterizes the normal elements of the closure of . A normal operator is similar to a nonquasidiagonal operator if and only if its essential spectrum contains more than two points.

**[1]**L. Brown, R. Douglas and P. Fillmore,*Unitary equivalence modulo the compact operators and extensions of algebras*, Springer Notes Series, 1973. MR**0380478 (52:1378)****[2]**R. G. Douglas and Carl Pearcy,*A note on quasitriangular operators*, Duke Math. J.**37**(1970), 177-188. MR**41**#2439. MR**0257790 (41:2439)****[3]**P. A. Fillmore, J. G. Stampfli and J. P. Williams,*On the essential numerical range, the essential spectrum, and a problem of Halmos*, Acta Sci. Math. (Szeged)**33**(1972), 177-192. MR**48**#896. MR**0322534 (48:896)****[4]**P. R. Halmos,*Ten problems in Hilbert space*, Bull. Amer. Math. Soc.**76**(1970), 887-933. MR**42**#5066. MR**0270173 (42:5066)****[5]**-,*Capacity in Banach algebras*, Indiana Univ. Math. J.**20**(1970/71), 855-863. MR**42**#3569. MR**0268672 (42:3569)****[6]**-,*Limits of shifts*, Acta Sci. Math. (Szeged)**34**(1973), 131-139. MR**0338812 (49:3576)****[7]**D. A. Herrero,*Normal limits of nilpotent operators*, Indiana Univ. Math. J.**23**(1974), 1097-1108. MR**0350476 (50:2968)****[8]**R. B. Holmes and B. R. Kripke,*Best approximation by compact operators*, Indiana Univ. Math. J.**21**(1971), 255-263. MR**45**#5718. MR**0296659 (45:5718)****[9]**T. Hoover, Thesis, University of Michigan, Ann. Arbor, Mich., 1970.**[10]**C. L. Olsen,*A structure theorem for polynomially compact operators*, Amer. J. Math.**93**(1971), 686-698. MR**0405152 (53:8947)****[11]**C. Pearcy and N. Salinas,*Compact perturbations of seminormal operators*, Indiana Univ. Math. J.**22**(1973), 789-793. MR**47**#2404. MR**0313851 (47:2404)****[12]**-,*Operators with compact self-commutator*, Canad. J. Math.**26**(1974), 115-120. MR**0336436 (49:1210)****[13]**C. R. Putnam,*The spectra of operators having resolvents of first-order growth*, Trans. Amer. Math. Soc.**133**(1968), 505-510. MR**37**#4651. MR**0229073 (37:4651)****[14]**-,*An inequality for the area of hyponormal spectra*, Math. Z.**116**(1970), 323-330. MR**42**#5085. MR**0270193 (42:5085)****[15]**N. Salinas,*Operators with essentially disconnected spectrum*, Acta Sci. Math. (Szeged)**33**(1972), 193-205. MR**0350450 (50:2942)****[16]**R. Smucker,*Quasidiagonal and quasitriangular operators*, Thesis, Indiana University, Bloomington, Ind., 1973.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47A55,
47B15

Retrieve articles in all journals with MSC: 47A55, 47B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1975-0374956-X

Article copyright:
© Copyright 1975
American Mathematical Society