Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Localization and sheaf reflectors


Authors: J. Lambek and B. A. Rattray
Journal: Trans. Amer. Math. Soc. 210 (1975), 279-293
MSC: Primary 18C15
DOI: https://doi.org/10.1090/S0002-9947-1975-0447364-0
MathSciNet review: 0447364
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a triple $ (S,\eta ,\mu )$ on a category $ \mathcal{A}$ with equalizers, one can form a new triple whose functor $ Q$ is the equalizer of $ \eta S$ and $ S\eta $. Fakir has studied conditions for $ Q$ to be idempotent, that is, to determine a reflective subcategory of $ \mathcal{A}$. Here we regard $ S$ as the composition of an adjoint pair of functors and give several new such conditions. As one application we construct a reflector in an elementary topos $ \mathcal{A}$ from an injective object $ I$, taking $ S = {I^{{I^{( - )}}}}$. We show that this reflector preserves finite limits and that the sheaf reflector for a topology in $ \mathcal{A}$ can be obtained in this way. We also show that sheaf reflectors in functor categories can be obtained from a triple of the form $ S = {I^{( - ,I)}},I$ injective, which we studied in a previous paper. We deduce that the opposite of a sheaf subcategory of a functor category is tripleable over Sets.


References [Enhancements On Off] (What's this?)

  • [1] H. Applegate and M. Tierney, Categories with models, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Lecture Notes in Math., vol. 80, Springer-Verlag, Berlin, 1969, pp. 156-244. MR 39 #4243. MR 0242916 (39:4243)
  • [2] -, Iterated cotriples, Reports of the Midwest Category Seminar. IV, Lecture Notes in Math., vol. 137, Springer-Verlag, Berlin, 1970, pp. 56-99. MR 42 #338. MR 0265429 (42:338)
  • [3] M. Barr, Non-abelian torsion theories, Canad. J. Math. 25 (1973), 1224-1237. MR 0360741 (50:13188)
  • [4] M. C. Bunge, Relative functor categories and categories of algebras, J. Algebra 11 (1969), 64-101. MR 38 #4536. MR 0236238 (38:4536)
  • [5] J. Duskin, Variations on Beck's tripleability criterion, Reports of the Midwest Category Seminar, III, Lecture Notes in Math., vol. 106, Springer-Verlag, Berlin, 1969, pp. 74-129. MR 40 #5691. MR 0252471 (40:5691)
  • [6] S. Fakir, Monade idempotente associée àune monade, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A99-A101. MR 41 #1828. MR 0257174 (41:1828)
  • [7] P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), 1-76. MR 0396714 (53:576)
  • [8] A. Kock and C. G. Wraith, Elementary toposes, Lecture Notes Series 30, Aarhus University, 1971. MR 0342578 (49:7324)
  • [9] J. Lambek and B. Rattray, Localization at injectives in complete categories, Proc. Amer. Math. Soc. 41 (1973), 1-9. MR 0414651 (54:2750)
  • [10] F. W. Lawvere, Quantifiers and sheaves, Proc. Internat. Congress Math. (Nice, 1970), vol. 1, Gauthier-Villars, Paris, 1971, pp. 329-334. MR 0430021 (55:3029)
  • [11] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, New York, 1971. MR 1712872 (2001j:18001)
  • [12] H.-M. Meyer, Spektraltopoi, Universität Tübingen, 1972 (preprint).
  • [13] C. J. Mikkelsen, Internal completeness of elementary topoi, Thesis, Aarhus University, 1973.
  • [14] B. Rattray, Non-additive torsion theories, Manuscripta Math. 12 (1974), 285-305. MR 0340360 (49:5115)
  • [15] C. M. Ringel, Monofunctors as reflectors, Trans. Amer. Math. Soc. 161 (1971), 293-306. MR 45 #1989. MR 0292907 (45:1989)
  • [16] M. Tierney, Axiomatic sheaf theory, Bull. Amer. Math. Soc. (to appear).
  • [17] F. Ulmer, On modules and objects which are flat over their endomorphism rings, Universität Zürich, 1971/72 (preprint).
  • [18] -, On the existence and exactness of the associated sheaf functor, J. Pure Appl. Algebra 3 (1973), 295-306. MR 0374231 (51:10431)
  • [19] D. H. Van Osdol, Sheaves in regular categories, Lecture Notes in Math., vol. 236, Springer-Verlag, New York, 1971, pp. 223-239.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 18C15

Retrieve articles in all journals with MSC: 18C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0447364-0
Keywords: Localization, triple, reflective subcategory, injective, sheaf, cartesian closed category, topos
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society