Localization and sheaf reflectors

Authors:
J. Lambek and B. A. Rattray

Journal:
Trans. Amer. Math. Soc. **210** (1975), 279-293

MSC:
Primary 18C15

DOI:
https://doi.org/10.1090/S0002-9947-1975-0447364-0

MathSciNet review:
0447364

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a triple on a category with equalizers, one can form a new triple whose functor is the equalizer of and . Fakir has studied conditions for to be idempotent, that is, to determine a reflective subcategory of . Here we regard as the composition of an adjoint pair of functors and give several new such conditions. As one application we construct a reflector in an elementary topos from an injective object , taking . We show that this reflector preserves finite limits and that the sheaf reflector for a topology in can be obtained in this way. We also show that sheaf reflectors in functor categories can be obtained from a triple of the form injective, which we studied in a previous paper. We deduce that the opposite of a sheaf subcategory of a functor category is tripleable over Sets.

**[1]**H. Applegate and M. Tierney,*Categories with models*, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Lecture Notes in Math., vol. 80, Springer-Verlag, Berlin, 1969, pp. 156-244. MR**39**#4243. MR**0242916 (39:4243)****[2]**-,*Iterated cotriples*, Reports of the Midwest Category Seminar. IV, Lecture Notes in Math., vol. 137, Springer-Verlag, Berlin, 1970, pp. 56-99. MR**42**#338. MR**0265429 (42:338)****[3]**M. Barr,*Non-abelian torsion theories*, Canad. J. Math.**25**(1973), 1224-1237. MR**0360741 (50:13188)****[4]**M. C. Bunge,*Relative functor categories and categories of algebras*, J. Algebra**11**(1969), 64-101. MR**38**#4536. MR**0236238 (38:4536)****[5]**J. Duskin,*Variations on Beck's tripleability criterion*, Reports of the Midwest Category Seminar, III, Lecture Notes in Math., vol. 106, Springer-Verlag, Berlin, 1969, pp. 74-129. MR**40**#5691. MR**0252471 (40:5691)****[6]**S. Fakir,*Monade idempotente associée àune monade*, C. R. Acad. Sci. Paris Sér. A-B**270**(1970), A99-A101. MR**41**#1828. MR**0257174 (41:1828)****[7]**P. Freyd,*Aspects of topoi*, Bull. Austral. Math. Soc.**7**(1972), 1-76. MR**0396714 (53:576)****[8]**A. Kock and C. G. Wraith,*Elementary toposes*, Lecture Notes Series 30, Aarhus University, 1971. MR**0342578 (49:7324)****[9]**J. Lambek and B. Rattray,*Localization at injectives in complete categories*, Proc. Amer. Math. Soc.**41**(1973), 1-9. MR**0414651 (54:2750)****[10]**F. W. Lawvere,*Quantifiers and sheaves*, Proc. Internat. Congress Math. (Nice, 1970), vol. 1, Gauthier-Villars, Paris, 1971, pp. 329-334. MR**0430021 (55:3029)****[11]**S. Mac Lane,*Categories for the working mathematician*, Springer-Verlag, New York, 1971. MR**1712872 (2001j:18001)****[12]**H.-M. Meyer,*Spektraltopoi*, Universität Tübingen, 1972 (preprint).**[13]**C. J. Mikkelsen,*Internal completeness of elementary topoi*, Thesis, Aarhus University, 1973.**[14]**B. Rattray,*Non-additive torsion theories*, Manuscripta Math.**12**(1974), 285-305. MR**0340360 (49:5115)****[15]**C. M. Ringel,*Monofunctors as reflectors*, Trans. Amer. Math. Soc.**161**(1971), 293-306. MR**45**#1989. MR**0292907 (45:1989)****[16]**M. Tierney,*Axiomatic sheaf theory*, Bull. Amer. Math. Soc. (to appear).**[17]**F. Ulmer,*On modules and objects which are flat over their endomorphism rings*, Universität Zürich, 1971/72 (preprint).**[18]**-,*On the existence and exactness of the associated sheaf functor*, J. Pure Appl. Algebra**3**(1973), 295-306. MR**0374231 (51:10431)****[19]**D. H. Van Osdol,*Sheaves in regular categories*, Lecture Notes in Math., vol. 236, Springer-Verlag, New York, 1971, pp. 223-239.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
18C15

Retrieve articles in all journals with MSC: 18C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1975-0447364-0

Keywords:
Localization,
triple,
reflective subcategory,
injective,
sheaf,
cartesian closed category,
topos

Article copyright:
© Copyright 1975
American Mathematical Society