Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On subnormal operators


Author: Mehdi Radjabalipour
Journal: Trans. Amer. Math. Soc. 211 (1975), 377-389
MSC: Primary 47B20
DOI: https://doi.org/10.1090/S0002-9947-1975-0377574-2
MathSciNet review: 0377574
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let T be the adjoint of a subnormal operator defined on a Hilbert space H. For any closed set $ \delta $, let $ {X_T}(\delta ) = \{ x \in H$: there exists an analytic function $ {f_x}:{\text{C}}\backslash \delta \to H$ such that $ (z - T){f_x}(z) \equiv x\} $. It is shown that T is decomposable (resp. normal) if $ {X_T}(\partial {G_\alpha })$ is closed (resp. if $ {X_T}(\partial {G_\alpha }) = \{ 0\} )$ for a certain family $ \{ {G_\alpha }\} $ of open sets. Some of the results are extended to the case that T is the adjoint of the restriction of a spectral or decomposable operator to an invariant subspace.


References [Enhancements On Off] (What's this?)

  • [1] C. Apostol, Restrictions and quotients of decomposable operators in a Banach space, Rev. Roumaine Math. Pures Appl. 13 (1968), 147-150. MR 37 #6786. MR 0231231 (37:6786)
  • [2] -, Roots of decomposable operator-valued analytic functions, Rev. Roumaine Math. Pures Appl. 13 (1968), 433-438. MR 38 #1548. MR 0233225 (38:1548)
  • [3] J. Bastian, Dissertation, Indiana University, 1973.
  • [4] J. E. Brennan, Approximation in the mean and quasianaliticity, J. Functional Analysis 12 (1973), 307-320. MR 0344481 (49:9220)
  • [5] M. S. Brodskiĭ, Triangular and Jordan representations of linear operators, ``Nauka", Moscow, 1969; English transl., Transl. Math. Monographs, vol 32, Amer. Math. Soc., Providence, R. I., 1971. MR 41 #4283. MR 0322542 (48:904)
  • [6] K. F. Clancey and C. R. Putnam, The local spectral behavior of completely subnormal operators, Trans. Amer. Math. Soc. 163 (1972), 239-244. MR 45 #934. MR 0291844 (45:934)
  • [7] I. Colojoară and C. Foiaş, The theory of generalized spectral operators, Gordon & Breach, New York, 1968. MR 0394282 (52:15085)
  • [8] N. Dunford and J. T. Schwartz, Linear operators. III: Spectral operators, Interscience, New York, 1971.
  • [9] C. Foiaş, Some applications of spectral sets. I. Harmonic-spectral measure, Akad. R. P. Romîne. Stud. Cerc. Mat. 10 (1959), 365-401; English transl., Amer. Math. Soc. Transl. (2) 61 (1967), 25-62. MR 22 #8340.
  • [10] S. Frunza, A duality theorem for decomposable operators, Rev. Roumaine Math. Pures Appl. 16 (1971), 1055-1058. MR 46 #710. MR 0301552 (46:710)
  • [11] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 34 #8178. MR 0208368 (34:8178)
  • [12] A. S. Markus, Some criteria for the completeness of a system of root vectors of a linear operator in a Banach space, Mat. Sb. 70 (112) (1966), 526-561; English transl., Amer. Math. Soc. Transl. (2) 85 (1969), 51-91. MR 35 #7151. MR 0216316 (35:7151)
  • [13] M. A. Naĭmark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. MR 19, 870; 22 #1824.
  • [14] S. Plafker, On decomposable operators, Proc. Amer. Math. Soc. 24 (1970), 215-216. MR 40 #1804. MR 0248552 (40:1804)
  • [15] C. R. Putnam, Eigenvalues and boundary spectra, Illinois J. Math. 12 (1968), 278-282. MR 37 #2030. MR 0226440 (37:2030)
  • [16] -, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330. MR 42 #5085. MR 0270193 (42:5085)
  • [17] -, Resolvent vectors, invariant subspaces, and sets of zero capacity, Math. Ann. 205 (1973), 165-171. MR 48 #4772. MR 0326428 (48:4772)
  • [18] J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476; errata, ibid., 115 (1965), 550. MR 30 #3375; 33 #4686. MR 0173161 (30:3375)
  • [19] -, A local spectral theory for operators. III: Resolvents, spectral sets and similarity, Trans. Amer. Math. Soc. 168 (1972), 133-151. MR 45 #4182. MR 0295114 (45:4182)
  • [20] -, Spectral subspaces of hyponormal operators (to appear).
  • [21] A. E. Taylor, Introduction to functional analysis, Wiley, New York; Chapman & Hall, London, 1958. MR 20 #5411. MR 0098966 (20:5411)
  • [22] L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in Math., no. 50, Springer-Verlag, Berlin and New York, 1968. MR 37 #3018. MR 0227434 (37:3018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B20

Retrieve articles in all journals with MSC: 47B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0377574-2
Keywords: Hilbert space, normal operator, spectral operator, subnormal operator, decomposable operator, spectral subspace
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society