Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On imbedding finite-dimensional metric spaces

Author: Stephen Leon Lipscomb
Journal: Trans. Amer. Math. Soc. 211 (1975), 143-160
MSC: Primary 54F45
MathSciNet review: 0380751
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The classical imbedding theorem in dimension theory gives a nice topological characterization of separable metric spaces of finite covering dimension. The longstanding problem of obtaining an analogous theorem for the nonseparable case is solved.

References [Enhancements On Off] (What's this?)

  • [1] S. Lipscomb, Imbedding one-dimensional metric spaces, Dissertation, University of Virginia, Charlottesville, Va., 1973.
  • [2] S. Lipscomb, A universal one-dimensional metric space, TOPO 72-- General Topology and Its Applications, Second Pittsburgh Internat. Conf., Lecture Notes in Math., vol. 378, Springer-Verlag, New York, 1974. MR 0358738 (50:11197)
  • [3] J. Nagata, A survey of dimension theory, General Topology and Its Relations to Modern Analysis and Algebra II, (Proc. Second Prague Sympos., 1966), Academia, Prague, 1967. MR 0232362 (38:687)
  • [4] -, A remark on general imbedding theorems in dimension theory, Proc. Japan Acad. 39 (1963), 197-199. MR 29 #1616. MR 0164319 (29:1616)
  • [5] -, Modern dimension theory, Bibliotheca Math., vol. 6, Interscience, New York, 1965. MR 34 #8380.
  • [6] G. Nöbeling, Über eine n-dimensionale Universalmenge im $ {R_{2n + 1'}}$, Math. Ann. 104 (1930), 71-80.
  • [7] P. Ostrand, Covering dimension in general spaces, General Topology and Appl. 1 (1971), no. 3, 209-221. MR 44 #5937. MR 0288741 (44:5937)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54F45

Retrieve articles in all journals with MSC: 54F45

Additional Information

Keywords: Covering dimension, imbedding finite-dimensional metric spaces, Baire's zero-dimensional space, perfect images of zero-dimensional spaces, Cantor's space, decompositions of topological spaces
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society