Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Immersions of complex hypersurfaces


Author: Stanley R. Samsky
Journal: Trans. Amer. Math. Soc. 211 (1975), 171-184
MSC: Primary 57D40
DOI: https://doi.org/10.1090/S0002-9947-1975-0388416-3
MathSciNet review: 0388416
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The varieties $ {V^n}(d) = \{ [{z_0}, \ldots ,{z_n}] \in C{P^n}:z_0^d + \cdots + z_n^d = 0,d > 0\} $ form a class of manifolds containing the complex projective spaces. Maps from $ {V^n}(d)$ to $ {V^k}(e)$ are partially characterized by a ``degree". We prove some nonimmersion results which are phrased in terms of this degree, and which generalize the results of S. Feder [4] on complex projective spaces.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632. MR 25 #2614. MR 0139178 (25:2614)
  • [2] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713-717. MR 0177422 (31:1685)
  • [3] E. Dyer, Cohomology theories, Math. Lecture Note Series, Benjamin, New York, 1969. MR 42 #3780. MR 0268883 (42:3780)
  • [4] S. Feder, Immersions and embeddings in complex projective spaces, Topology (4) (1965), 143-158. MR 32 #1717. MR 0184244 (32:1717)
  • [5] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 9, Springer-Verlag, Berlin, 1956; English transl., Die Grundlehren der math. Wissenschaften, Band 131, Springer-Verlag, New York, 1966. MR 18, 509; 34 #2573. MR 0082174 (18:509b)
  • [6] D. Husemoller, Fiber bundles, McGraw-Hill, New York, 1966. MR 37 #4821. MR 0229247 (37:4821)
  • [7] I. M. James. Euclidean models of projective spaces, Bull. London Math. Soc. 3 (1971), 257-276. MR 0298680 (45:7729)
  • [8] K. H. Mayer, Eliptische Differentialoperatoren und Ganzzahligkeitssätze für characteristische Zahlen, Topology 4 (1965), 295-313. MR 33 #6650. MR 0198495 (33:6650)
  • [9] J. Milnor, Representation rings of some classical groups, Mimeographed notes, Princeton, 1958.
  • [10] R. Thom, Quelques propriétes globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 15, 890. MR 0061823 (15:890a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57D40

Retrieve articles in all journals with MSC: 57D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0388416-3
Keywords: Embeddings, immersions, K-theory, normal bundles, characteristic classes, hypersurfaces
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society