Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Inequalities for a complex matrix whose real part is positive definite


Author: Charles R. Johnson
Journal: Trans. Amer. Math. Soc. 212 (1975), 149-154
MSC: Primary 15A45
DOI: https://doi.org/10.1090/S0002-9947-1975-0424851-2
MathSciNet review: 0424851
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Denote the real part of $ A \in {M_n}(C)$ by $ H(A) = {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}(A + {A^\ast})$. We provide dual inequalities relating $ H({A^{ - 1}})$ and $ H{(A)^{ - 1}}$ and an identity between two functions of A when A satisfies $ H(A) > 0$. As an application we give an inequality (for matrices A satisfying $ H(A) > 0$) which generalizes Hadamard's determinantal inequality for positive definite matrices.


References [Enhancements On Off] (What's this?)

  • [1] C. R. DePrima and C. R. Johnson, The range of $ {A^{ - 1}}{A^\ast}$ in $ GL(n,C)$, Linear Algebra Appl. 9 (1974), 209-222. MR 0361862 (50:14305)
  • [2] Ky Fan, Generalized Cayley transforms and strictly dissipative matrices, Linear Algebra Appl. 5 (1972), 155-172. MR 45 #5145. MR 0296084 (45:5145)
  • [3] -, On real matrices with positive definite symmetric component, Linear Multilinear Algebra 1 (1973), 1-4. MR 0347857 (50:358)
  • [4] C. R. Johnson, An inequality for matrices whose symmetric part is positive definite, Linear Algebra Appl. 6 (1973), 13-18. MR 47 #251. MR 0311689 (47:251)
  • [5] A. M. Ostrowski and O. Taussky, On the variation of the determinant of a positive definite matrix, Nederl. Akad. Wetensch. Proc. Ser. A 54 = Indag. Math. 13 (1951), 383-385. MR 13, 900. MR 0047597 (13:900b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 15A45

Retrieve articles in all journals with MSC: 15A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0424851-2
Keywords: Eigenvalues, Hadamard inequality, real part, positive definite
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society