Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Convolution equations for vector-valued entire functions of nuclear bounded type


Author: Thomas A. W. Dwyer
Journal: Trans. Amer. Math. Soc. 217 (1976), 105-119
MSC: Primary 46G99; Secondary 32H15
DOI: https://doi.org/10.1090/S0002-9947-1976-0487450-3
MathSciNet review: 0487450
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given two complex Banach spaces E and F, convolution operators ``with scalar coefficients'' are characterized among all convolution operators on the space $ {H_{Nb}}(E';F)$ of entire mappings of bounded nuclear type of E' into F. The transposes of such operators are characterized as multiplication operators in the space $ Exp(E;F')$ of entire mappings of exponential type of E into F'. The division theorem for entire functions of exponential type of Malgrange and Gupta is then extended to the case when one factor is vector-valued. With this tool the following ``vector-valued'' existence and approximation theorems for convolution equations are proved: THEOREM 1. Nonzero convolution operators ``of scalar type'' are surjective on $ {H_{Nb}}(E';F)$. THEOREM 2. Solutions of homogeneous convolution equations of scalar type can be approximated in $ {H_{Nb}}(E';F)$ by exponential-polynomial solutions.


References [Enhancements On Off] (What's this?)

  • [A] . R. Aron, Tensor products of holomorphic functions, Nederl. Akad. Wetensch. Proc. Ser. A 76 = Indag. Math 35 (1973), 192-202. MR 0346530 (49:11255)
  • [A-B] . R. Aron and Ph. Boland, Unpublished results.
  • [B1] . Ph. Boland, Espaces pondérés de fonctions entières et de fonctions entières nucléaires dans les espaces vectoriels topologiques réels ou complexes, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A643-A646.
  • [B2] . -, Some spaces of entire and nuclearly entire functions on a Banach space, J. Reine Angew. Math., Part II, 271 (1974), 8-27.
  • [B3] . -, Malgrange theorem for entire functions on nuclear spaces, Proc. on Infinite-Dimensional Holomorphy, Lecture Notes in Math., vol. 364, Springer-Verlag, New York, 1974. MR 0420271 (54:8285)
  • [B-D] . Ph. Boland and S. Dineen, Convolution operators on G-holomorphic functions in infinite dimensions, Trans. Amer. Math. Soc. 190 (1974), 313-323. MR 0407599 (53:11371)
  • [Di] . S. Dineen, Holomorphy types on a Banach space, Studia Math. 39 (1971), 241-288. MR 46 #3837. MR 0304705 (46:3837)
  • [D1] . T. A. W. Dwyer III, Partial differential equations in Fischer-Fock spaces for the Hilbert-Schmidt holomorphy type, Bull. Amer. Math. Soc. 77 (1971), 725-730. MR 44 #7288. MR 0290103 (44:7288)
  • [D2] . -, Holomorphic Fock representations and partial differential equations on countably Hilbert spaces, Bull. Amer. Math. Soc. 79 (1973), 1045-1050. MR 47 #9283. MR 0320749 (47:9283)
  • [D3] . -, Partial differential equations in holomorphic Fock spaces, Proc. Sympos. Anal. (Recife, July, 1972), L. Nachbin, (Editor), Lecture Notes in Math., vol. 364, Springer-Verlag, New York, 1974. MR 0404893 (53:8692)
  • [D4] . -, Holomorphic representation of tempered distributions and weighted Fock spaces, Proc. Colloq. Analyse (Rio de Janeiro, August, 1972), L. Nachbin, (Editor), Actualités Sci. Indust., no. 1367, Hermann, Paris, 1975, pp. 95, 118. MR 0402496 (53:6315)
  • [D5] . -, Dualité des espaces de fonctions entières en dimension infinie, C. R. Acad. Sci. Paris Ser A-B 281 (1975), A1439-A1442. MR 0383077 (52:3958)
  • [D6] . -, Équations différentielles d'ordre infini dans des espaces localement convexes, C. R. Acad. Sci. Paris Ser. A-B 281 (1975), A163-A166.
  • [Dun] . N. Dunford, Uniformity in linear spaces, Trans. Amer. Math. Soc. 44 (1938), 305-356. MR 1501971
  • [Gr] . A. Grothendieck, Sur certains espaces de fonctions holomorphes. II, J. Reine Angew. Math. 192 (1953), 77-95. MR 15, 963. MR 0062335 (15:963b)
  • [G1] . C. Gupta, On the Malgrange theorem for nuclearly entire functions of bounded type on a Banach space, Notas de Matemática, no. 37, I. M. P. A., Rio de Janeiro, Brasil, 1968. MR 0632066 (58:30238)
  • [G2] . -, Convolution operators and holomorphic mappings on a Banach space, Sem. Anal. Mod. No. 2, Univ. Sherbrooke, Québec, 1969.
  • [G3] . -, On the Malgrange theorem for nuclearly entire functions of bounded type on a Banach space, Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag Math 32 (1970), 356-358. MR 44 #7289. MR 0290104 (44:7289)
  • [H] . M. Hervé, Analytic and plurisubharmonic functions in finite and infinite dimensions, Lecture Notes in Math., vol. 198, Springer-Verlag, New York, 1970.
  • [Mat] . M. C. Matos, Sur le théorème d'approximation et d'existence de Malgrange-Gupta, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A1258-A1259. MR 44 #3105.
  • [N1] . L. Nachbin, Topology on spaces of holomorphic mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 47, Springer-Verlag, New York 1969. MR 40 #7787. MR 0254579 (40:7787)
  • [N2] . -, Convolution operators in spaces of nuclearly entire functions on a Banach space, Functional analysis and related fields (Chicago 1968), Springer-Verlag, Berlin, 1970, pp. 167-171.
  • [P] . D. Pisanelli, Sull'integrazione di un sistema di equazioni ai differenziali totali in uno spazio di Banach, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 46 (1969), 672-681. MR 41 #8991. MR 0264396 (41:8991)
  • [Tr] . F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. MR 37 #726. MR 0225131 (37:726)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46G99, 32H15

Retrieve articles in all journals with MSC: 46G99, 32H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0487450-3
Keywords: Infinite-dimensional holomorphy, convolution equations, vector-valued entire functions
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society