Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Piecewise monotone interpolation and approximation with Muntz polynomials


Authors: Eli Passow, Louis Raymon and Oved Shisha
Journal: Trans. Amer. Math. Soc. 218 (1976), 197-205
MSC: Primary 41A05
DOI: https://doi.org/10.1090/S0002-9947-1976-0399705-1
MathSciNet review: 0399705
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The possibility (subject to certain restrictions) of solving the following approximation and interpolation problem with a given set of ``Muntz polynomials'' on a real interval is demonstrated:

(i) approximation of a continuous function by a ``copositive'' Muntz polynomial;

(ii) approximation of a continuous function by a ``comonotone'' Muntz polynomial;

(iii) approximation of a continuous function with a monotone kth difference by a Muntz polynomial with a monotone kth derivative;

(iv) interpolation by piecewise monotone Muntz polynomials--i. e., polynomials that are monotone on each of the intervals determined by the points of interpolation.

The strong interrelationship of these problems is shown implicitly in the proofs.


References [Enhancements On Off] (What's this?)

  • [1] J. Bak and D. J. Newman, Müntz-Jackson theorems in $ {L^p}[0,1]$ and $ C[0,1]$, Amer. J. of Math. 94 (1972), 437-457. MR 46 #9605. MR 0310507 (46:9605)
  • [2] W. J. Kammerer, Polynomial approximations to finitely oscillating functions, Math. Comp. 15 (1961), 115-119. MR 23 #A1187. MR 0123865 (23:A1187)
  • [3] D. Leviatan, On the Jackson-Müntz theorem, J. Approximation Theory 10 (1974), 1-5. MR 0425428 (54:13383)
  • [4] K. Lim, Note on monotone approximation, Bull. London Math. Soc. 3 (1971), 366-368. MR 45 #2380. MR 0293303 (45:2380)
  • [5] G. G. Lorentz, Bernstein polynomials, Math. Expositions, no. 8, Univ. of Toronto Press, Toronto, 1953. MR 15, 217. MR 0057370 (15:217a)
  • [6] G. G. Lorentz and K. L. Zeller, Degree of approximation by monotone polynomials. I, J. Approximation Theory 1 (1968), 501-504. MR 39 #699. MR 0239342 (39:699)
  • [7] E. Passow and L. Raymon, Monotone and comonotone approximation, Proc. Amer. Math. Soc. 42 (1974), 390-394. MR 0336176 (49:952)
  • [8] -, The degree of piecewise monotone interpolation, Proc. Amer. Math. Soc. 48 (1974), 409-412. MR 0430608 (55:3613)
  • [9] E. Passow, L. Raymon and J. A. Roulier, Comonotone polynomial approximation, J. Approximation Theory 11 (1974), 221-224. MR 0352807 (50:5293)
  • [10] J. A. Roulier, Monotone approximation of certain classes of functions, J. Approximation Theory 1 (1968), 319-324. MR 38 #4875. MR 0236580 (38:4875)
  • [11] O. Shisha, Monotone approximation, Pacific J. Math. 15 (1965), 667-671. MR 32 #2802. MR 0185334 (32:2802)
  • [12] W. Wolibner, Sur un polynôme d'interpolation, Colloq. Math. 2 (1951), 136-137. MR 13, 343. MR 0043946 (13:343e)
  • [13] S. W. Young, Piecewise monotone polynomial interpolation, Bull. Amer. Math. Soc. 73 (1967), 642-643. MR 35 #3326. MR 0212455 (35:3326)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A05

Retrieve articles in all journals with MSC: 41A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0399705-1
Keywords: Approximation, interpolation, Muntz polynomials, restricted approximation, restricted interpolation, monotone approximation, piecewise monotone interpolation
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society