Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A Hausdorff measure inequality

Authors: Lawrence R. Ernst and Gerald Freilich
Journal: Trans. Amer. Math. Soc. 219 (1976), 361-368
MSC: Primary 28A75
MathSciNet review: 0419739
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the Hausdorff $ (m + k)$-measure of a product set is no less than the product of the Hausdorff m-measure of the (measurable) first component set in $ {{\mathbf{R}}^m}$ and the (finite) Hausdorff k-measure of the second component in $ {{\mathbf{R}}^n}$.

References [Enhancements On Off] (What's this?)

  • [1] A. S. Besicovitch and P. A. P. Moran, The measure of product and cylinder sets, J. London Math. Soc. 20 (1945), 110-120. MR 8, 18. MR 0016448 (8:18f)
  • [2] L. R. Ernst, A proof that $ {H^2}$ and $ {T^2}$ are distinct measures, Trans. Amer. Math. Soc. 191 (1974), 363-372. MR 0361007 (50:13454)
  • [3] H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, Berlin and New York, 1969. MR 41 #1976. MR 0257325 (41:1976)
  • [4] G. Freilich, On the measure of Cartesian product sets, Trans. Amer. Math. Soc. 69 (1950), 232-275. MR 12, 324. MR 0037893 (12:324a)
  • [5] E. F. Moore, Convexly generated k-dimensional measures, Proc. Amer. Math. Soc. 2 (1951), 597-606. MR 13, 218. MR 0043175 (13:218c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A75

Retrieve articles in all journals with MSC: 28A75

Additional Information

Keywords: Hausdorff measure, product set
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society