Some examples in shape theory using the theory of compact connected abelian topological groups

Author:
James Keesling

Journal:
Trans. Amer. Math. Soc. **219** (1976), 169-188

MSC:
Primary 55D99; Secondary 22C05

MathSciNet review:
0436134

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In previous papers the author has studied the shape of compact connected abelian topological groups. This study has led to a number of theorems and examples in shape theory. In this paper a theorem is proved concerning the Čech homology of compact connected abelian topological groups. This theorem together with the author's previous results are then used to study the movability of general compact Hausdorff spaces. In the theory of shape for compact metric spaces, a number of significant theorems have been proved for movable compact metric spaces. Among these are a theorem of Hurewicz type due to K. Kuperberg, a Whitehead type theorem due to Moszyńska, and a theorem concerning the exactness of the Čech homology sequence for movable compact metric pairs due to Overton. In this paper examples are constructed which show that these theorems do not generalize to arbitrary movable compact Hausdorff spaces without additional assumptions.

**[1]**Karol Borsuk,*Concerning homotopy properties of compacta*, Fund. Math.**62**(1968), 223–254. MR**0229237****[2]**Karol Borsuk,*On movable compacta*, Fund. Math.**66**(1969/1970), 137–146. MR**0251698****[3]**James Draper and James Keesling,*An example concerning the Whitehead theorem in shape theory*, Fund. Math.**92**(1976), no. 3, 255–259. MR**0431157****[4]**László Fuchs,*Infinite abelian groups. Vol. I*, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR**0255673****[5]**László Fuchs,*Infinite abelian groups. Vol. II*, Academic Press, New York-London, 1973. Pure and Applied Mathematics. Vol. 36-II. MR**0349869****[6]**Karl Heinrich Hofmann,*Categories with convergence, exponential functors, and the cohomology of compact abelian groups*, Math. Z.**104**(1968), 106–140. MR**0228615****[7]**W. Holsztyński,*An extension and axiomatic characterization of Borsuk’s theory of shape*, Fund. Math.**70**(1971), no. 2, 157–168. MR**0282368****[8]**James Keesling,*Shape theory and compact connected abelian topological groups*, Trans. Amer. Math. Soc.**194**(1974), 349–358. MR**0345064**, 10.1090/S0002-9947-1974-0345064-8**[9]**James Keesling,*Continuous functions induced by shape morphisms*, Proc. Amer. Math. Soc.**41**(1973), 315–320. MR**0334141**, 10.1090/S0002-9939-1973-0334141-8**[10]**James Keesling,*An algebraic property of the Čech cohomology groups which prevents local connectivity and movability*, Trans. Amer. Math. Soc.**190**(1974), 151–162. MR**0367973**, 10.1090/S0002-9947-1974-0367973-6**[11]**James Keesling,*On the shape of torus-like continua and compact connected topological groups*, Proc. Amer. Math. Soc.**40**(1973), 297–302. MR**0319140**, 10.1090/S0002-9939-1973-0319140-4**[12]**-,*Products in the shape category and some applications*, Convegno di Topologia, Symposia Mathematica (to appear).**[13]**James Keesling,*On the Whitehead theorem in shape theory*, Fund. Math.**92**(1976), no. 3, 247–253. MR**0431156****[14]**James Keesling,*The Čech homology of compact connected abelian topological groups with applications to shape theory*, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 325–331. Lecture Notes in Math., Vol. 438. MR**0405344****[15]**James Keesling,*The Čech cohomology of movable and 𝑛-movable spaces*, Trans. Amer. Math. Soc.**219**(1976), 149–167. MR**0407829**, 10.1090/S0002-9947-1976-0407829-5**[16]**G. Kozlowski and J. Segal,*𝑛-movable compacta and ANR-systems*, Fund. Math.**85**(1974), 235–243. MR**0358678****[17]**-,*Locally well-behaved paracompacta in shape theory*(preprint).**[18]**-,*Movability and shape connectivity*(preprint).**[19]**Krystyna Kuperberg,*An isomorphism theorem of the Hurewicz-type in Borsuk’s theory of shape*, Fund. Math.**77**(1972), no. 1, 21–32. MR**0324692****[20]**Saunders Mac Lane and Garrett Birkhoff,*Algebra*, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1967. MR**0214415****[21]**Sibe Mardešić,*Shapes for topological spaces*, General Topology and Appl.**3**(1973), 265–282. MR**0324638****[22]**-,*On the Whitehead theorem in shape theory*. I (preprint).**[23]**-,*On the Whitehead theorem in shape theory*. II (preprint).**[24]**S. Mardešić and J. Segal,*Movable compacta and 𝐴𝑁𝑅-systems*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**18**(1970), 649–654 (English, with Loose Russian summary). MR**0283796****[25]**Sibe Mardešić and Jack Segal,*Shapes of compacta and ANR-systems*, Fund. Math.**72**(1971), no. 1, 41–59. MR**0298634****[26]**M. Moszyńska,*Uniformly movable compact spaces and their algebraic properties*, Fund. Math.**77**(1972), no. 2, 125–144. MR**0322863****[27]**M. Moszyńska,*The Whitehead theorem in the theory of shapes*, Fund. Math.**80**(1973), no. 3, 221–263. MR**0339159****[28]**R. H. Overton,*Čech homology for movable compacta*, Fund. Math.**77**(1973), no. 3, 241–251. MR**0322797****[29]**R. Overton and J. Segal,*A new construction of movable compacta*, Glasnik Mat. Ser. III**6(26)**(1971), 361–363 (English, with Serbo-Croatian summary). MR**0322796****[30]**L. S. Pontrjagin,*Continuous groups*, 2nd ed., GITTL, Moscow, 1954; English transl.,*Topological groups*, Gordon and Breach, New York, 1966. MR**34**#1439.**[31]**Edwin H. Spanier,*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112****[32]**S. Spież,*Movability and uniform movability*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**22**(1974), 43–45 (English, with Russian summary). MR**0346741**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55D99,
22C05

Retrieve articles in all journals with MSC: 55D99, 22C05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1976-0436134-6

Keywords:
Shape theory,
movable space,
Čech homology,
Hurewicz type theorem,
Whitehead type theorem,
exactness of Čech homology,
compact connected abelian topological group

Article copyright:
© Copyright 1976
American Mathematical Society