Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some topics on equilibria


Author: Ezio Marchi
Journal: Trans. Amer. Math. Soc. 220 (1976), 87-102
MSC: Primary 90D10
DOI: https://doi.org/10.1090/S0002-9947-1976-0411665-3
MathSciNet review: 0411665
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper we introduce a proof for the existence of equilibrium points of a certain nonbilinear problem by using the Knaster-Kuratowski-Mazurkiewicz theorem, which turns out to be somewhat efficient for studies related to n-person games. As an application of this result, by embedding an n-person game in the ``cooperative'' set of action the existence of an equilibrium point in the strict noncooperative case and more general cases is obtained.


References [Enhancements On Off] (What's this?)

  • [1] H. Chin, T. Parthasarathy and T. E. S. Raghavan, Structure of equilibria in N-person non-cooperative games, Internat. J. Game Theory 3 (1974), 1-19. MR 49 #8672. MR 0343932 (49:8672)
  • [2] S. Karlin, Mathematical methods and theory in games, programming and economics. Vol. I: Matrix games, programming, and mathematical economics, Addison-Wesley, Reading, Mass., 1959. MR 22 #2496. MR 1160778 (93a:90001)
  • [3] V. L. Kreps, Uniqueness of the equilibrium point in bimatrix games, Internat. J. Game Theory 3 (1974), 115-118. MR 0408852 (53:12615)
  • [4] H. W. Kuhn, An algorithm for equilibrium points in bimatrix games, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1657-1662. MR 24 #B2036. MR 0135997 (24:B2036)
  • [5] E. Marchi, On the minimax theorem of the theory of games, Ann. Mat. Pura Appl. (4) 77 (1967), 207-282. MR 38 #1914. MR 0233593 (38:1914)
  • [6] -, E-points of games, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 878-882. MR 35 #7702. MR 0216873 (35:7702)
  • [7] -, Fundamentals of non-cooperative games, Econ. Res. Program, Princeton Univ. Res. Memo. No. 97, 1968, p. 315.
  • [8] -, The natural vector bundle of the set of product probability, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 7-17. MR 47 #4301. MR 0315752 (47:4301)
  • [9] -, Equilibrium points of rational n-person games, J. Math. Anal. Appl. (to appear). MR 0401183 (53:5012)
  • [10] J. F. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 48-49. MR 11, 192. MR 0031701 (11:192c)
  • [11] -, Non-cooperative games, Ann of Math. (2) 54 (1951), 286-295. MR 13, 261. MR 0043432 (13:261g)
  • [12] H. Nikaidô, Convex structures and economic theory, Math. in Sci. and Engineering, vol. 51, Academic Press, New York and London, 1968. MR 43 #2970. MR 0277233 (43:2970)
  • [13] H. Nikaido and K. Isoda, Note on non-cooperative convex games, Pacific J. Math. 5 (1955), 807-815. MR 17, 506. MR 0073910 (17:506g)
  • [14] L. S. Shapley and R. N. Snow, Basic solutions of discrete games, Contributions to the Theory of Games. Vol. I, Ann. of Math. Studies, no. 24 (H. W. Kuhn and A. W. Tucker, Editors), Princeton Univ. Press, Princeton, N. J., 1950, pp. 27-35. MR 12, 513. MR 0039216 (12:513f)
  • [15] L. S. Shapley, On balanced sets and cores, Naval Res. Logist. Quart. 14 (1967), 453-460.
  • [16] J. von Neumann, Über ein ökonomisches Gleichnungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, Ergebnisse eines Mathematischen Kolloquiums 8 (1937), 73-83.
  • [17] N. N. Vorob'ev, Equilibrium points in bimatrix games, Teor. Verojatnost. i Primenen 3 (1958), 313-331 = Theor. Probability Appl. 3 (1958), 297-309. MR 20 #6948. MR 0100515 (20:6948)
  • [18] R. Wilson, Computing equilibria of n-person games, Siam J. Appl. Math. 21 (1971), 80-87. MR 0371424 (51:7642)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 90D10

Retrieve articles in all journals with MSC: 90D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0411665-3
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society