Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Group extensions and cohomology for locally compact groups. III


Author: Calvin C. Moore
Journal: Trans. Amer. Math. Soc. 221 (1976), 1-33
MSC: Primary 22D05; Secondary 22D10, 22D30
DOI: https://doi.org/10.1090/S0002-9947-1976-0414775-X
MathSciNet review: 0414775
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We shall define and develop the properties of cohomology groups $ {H^n}(G,A)$ which can be associated to a pair (G, A) where G is a separable locally compact group operating as a topological transformation group of automorphisms on the polonais abelian group A. This work extends the results in [29] and [30], and these groups are to be viewed as analogues of the Eilenberg-Mac Lane groups for discrete G and A. Our cohomology groups in dimension one are classes of continuous crossed homomorphisms, and in dimension two classify topological group extensions of G by A. We characterize our cohomology groups in all dimensions axiomatically, and show that two different cochain complexes can be used to construct them. We define induced modules and prove a version of Shapiro's lemma which includes as a special case the Mackey imprimitivity theorem. We show that the abelian groups $ {H^n}(G,A)$ are themselves topological groups in a natural way and we investigate this additional structure.


References [Enhancements On Off] (What's this?)

  • [1] L. Auslander and C. C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. No. 62 (1966). MR 34 #7723. MR 0207910 (34:7723)
  • [2] N. Bourbaki, Éléments de mathématique. VIII. Topologie générale. Chap. 9, Actualités Sci. Indust., no. 1045, Hermann, Paris, 1948. MR 10, 260. MR 0027138 (10:260a)
  • [3] S. Banach, Théorie des opérations linéaires, Monografie Mat., tom 1, PWN, Warsaw, 1932; reprint, Chelsea, New York, 1955. MR 17, 175.
  • [4] L. G. Brown, Extensions of topological groups, Pacific J. Math. 39 (1971), 71-78. MR 46 #6384. MR 0307264 (46:6384)
  • [5] -, Topologically complete groups, Proc. Amer. Math. Soc. 35 (1972), 593-600. MR 46 #7435. MR 0308321 (46:7435)
  • [6] -, Completeness, separability, metrizability and extensions of topological groups (in preparation).
  • [7] D. Buchsbaum, Satellites and universal functors, Ann. of Math. (2) 71 (1960), 199-209. MR 22 #3751. MR 0112905 (22:3751)
  • [8] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris, 1957. MR 20 #1234. MR 0094722 (20:1234)
  • [9] -, Dual et quasi-dual d'une algèbre de Banach involutive, Trans. Amer. Math. Soc. 104 (1963), 273-283. MR 25 #3384.
  • [10] A. Douady, Cohomologies des groupes compacts totalement discontinues, Séminaire Bourbaki 12e année: 1959/60, Exposé 189, Secrétariat mathématique, Paris, 1960. MR 23 #A2273.
  • [11] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [12] W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 56 = Indag. Math. 15 (1953), 484-504. MR 15, 505. MR 0059285 (15:505b)
  • [13] A. Guichardet, Sur la cohomologie des groupes topologique. I, II, Bull. Sci. Math. (2) 95 (1971), 161-176; ibid. (2) 96 (1972), 305-322. MR 46 #6385; 49 #5219. MR 0307265 (46:6385)
  • [14] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. No. 127 (1972). MR 0374934 (51:11130)
  • [15] G. P. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J. Math. 6 (1962), 367-401. MR 26 #5092. MR 0147577 (26:5092)
  • [16] G. P. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134. MR 14, 619. MR 0052438 (14:619b)
  • [17] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [18] C. Kuratowski, Topologie. Vol. I, 3rd ed., PWN, Warsaw, 1952. MR 14, 1000. MR 0054937 (14:1000i)
  • [19] G. W. Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16 (1949), 313-326. MR 11, 10. MR 0030532 (11:10b)
  • [20] -, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101-139. MR 13, 434. MR 0044536 (13:434a)
  • [21] -, Induced representations of locally compact groups. II. The Frobenius reciprocity theorem, Ann. of Math. (2) 58 (1953), 193-221. MR 15, 101. MR 0056611 (15:101a)
  • [22] -, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 537-545. MR 11, 158. MR 0031489 (11:158b)
  • [23] -, Les ensembles borélien et les extensions des groupes, J. Math. Pures Appl. (9) 36 (1957), 171-178. MR 19, 752. MR 0089998 (19:752a)
  • [24] -, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165. MR 19, 752. MR 0089999 (19:752b)
  • [25] -, Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327-335. MR 26 #1424. MR 0143874 (26:1424)
  • [26] L. Michel, Sur les extensiones centrales du groupe de Lorentz inhomogene connexe, Nuclear Phys. 57 (1965), 356-385. MR 35 #1699. MR 0210813 (35:1699)
  • [27] J. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430-436. MR 17, 1120. MR 0077932 (17:1120a)
  • [28] G. D. Mostow, Cohomology of topological groups and solvmanifolds, Ann. of Math. (2) 73 (1961), 20-48. MR 23 #A2484. MR 0125179 (23:A2484)
  • [29] C. C. Moore, Extensions and low dimensional cohomology theory of locally compact groups. I, Trans. Amer. Math. Soc. 113 (1964), 40-63. MR 30 #2106. MR 0171880 (30:2106)
  • [30] -, Extensions and low dimensional cohomology theory of locally compact groups. II, Trans. Amer. Math. Soc. 113 (1964), 64-86. MR 30 #2106.
  • [31] -, Restrictions of unitary representations to subgroups and ergodic theory: Group extensions and group cohomology, Group Representations in Math. and Phys. (Battelle Seattle 1969 Rencontres), Lecture Notes in Phys., vol. 6, Springer, Berlin, 1970, pp. 1-35. MR 43 #4955. MR 0279232 (43:4955)
  • [32] -, Group extensions of p-adic and adelic linear groups, Inst. Hautes Études Sci. Publ. Math. No. 35 (1968), 157-222. MR 39 #5575. MR 0244258 (39:5575)
  • [33] A. Weil, Sur certains groupes d' opérateurs unitaires, Acta Math. 111 (1964), 143-211. MR 29 #2324. MR 0165033 (29:2324)
  • [34] D. Wigner, Algebraic cohomology of topological groups, Trans. Amer. Math. Soc. 178 (1973), 83-93. MR 0338132 (49:2898)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D05, 22D10, 22D30

Retrieve articles in all journals with MSC: 22D05, 22D10, 22D30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0414775-X
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society