Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotically autonomous multivalued differential equations


Author: James P. Foti
Journal: Trans. Amer. Math. Soc. 221 (1976), 449-452
MSC: Primary 34D05
DOI: https://doi.org/10.1090/S0002-9947-1976-0435524-5
MathSciNet review: 0435524
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The asymptotic behavior of solutions of the perturbed autonomous multivalued differential equation $ x' \in F(x) + G(t,x)$ is examined in relation to the behavior of solutions of the autonomous equation $ x' \in F(x)$ assuming that all solutions of the latter approach zero as t approaches $ \infty $.


References [Enhancements On Off] (What's this?)

  • [1] H. A. Antosiewicz, Stable systems of differential equations with integrable perturbation term, J. London Math. Soc. 31 (1956), 208-212. MR 18, 42. MR 0079178 (18:42c)
  • [2] Fred Brauer and Aaron Strauss, Perturbations of nonlinear systems of differential equations. III, J. Math. Anal. Appl. 31 (1970), 37-48. MR 41 #3919. MR 0259277 (41:3919)
  • [3] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Ergebnisse der Math. und ihrer Grenzgebiete, N. F., Band 16, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 27 #1661.
  • [4] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022. MR 0069338 (16:1022b)
  • [5] A. Lasota and Aaron Strauss, Asymptotic behavior for differential equations which cannot be locally linearized, J. Differential Equations 10 (1971), 152-172. MR 43 #3570. MR 0277837 (43:3570)
  • [6] S. Lefschetz, Differential equations: Geometric theory, 2nd ed., Pure and Appl. Math., vol. 6, Interscience, New York, 1963. MR 27 #3864. MR 0153903 (27:3864)
  • [7] Aaron Strauss and James A. Yorke, On asymptotically autonomous differential equations, Math. Systems Theory 1 (1967), 175-182. MR 35 #4524. MR 0213666 (35:4524)
  • [8] -, Perturbation theorems for ordinary differential equations, J. Differential Equations 3 (1967), 15-30. MR 34 #3029. MR 0203176 (34:3029)
  • [9] -, Perturbing uniform asymptotically stable nonlinear systems, J. Differential Equations 6 (1969), 452-483. MR 40 #5998. MR 0252781 (40:5998)
  • [10] T. Yoshizawa, Stability theory by Lyapunov's second method, Publ. Math. Soc. Japan, no. 9, Math. Soc. Japan, Tokyo, 1966. MR 34 #7896. MR 0208086 (34:7896)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34D05

Retrieve articles in all journals with MSC: 34D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0435524-5
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society