Potential processes
Author:
R. V. Chacon
Journal:
Trans. Amer. Math. Soc. 226 (1977), 3958
MSC:
Primary 60J45; Secondary 31D05
MathSciNet review:
0501374
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The prototype of a potential process is a stochastic process which visits the same points in the same order as a Markov process, but at a rate obtained from a nonanticipating time change. The definition of a potential process may be given intrinsically and most generally without mention of a Markov process, in terms of potential theory. The definition may be given more directly and less generally in terms of potentials which arise from Markov processes, or more directly than this, as suitably timechanged Markov processes. The principal purpose of studying the class of potential processes, which may be shown to include martingales as well as Markov processes themselves, is to give a unified treatment to a wide class of processes which has potential theory at its core. That it is possible to do so suggests that potential rather than martingale results are central to the study of Markov processes. Furthermore, this also suggests that it is not the Markov property itself which makes Markov processes tractable, but rather the potential structure which can be constructed with the assistance of the Markov property. The general theory of potential processes is developed in a forthcoming paper. It will be shown there that a Markov process subject to an ordinary continuous nonanticipating time change is a local potential process. It may be seen, by examining examples, that it is necessary to consider randomized stopping times and randomized nonanticipating time changes in the general case. In the forthcoming paper a more general notion than randomized nonanticipating time changes is used to obtain a characterization of potential processes. It is an open problem whether randomization itself is sufficient in the general case, and whether ordinary nonanticipating time changes are sufficient for continuous parameter martingales and Brownian motion on the line. The emphasis in the present paper will be on developing the theory of discrete parameter martingales as a special case of the general theory.
 [1]
D.
G. Austin, G.
A. Edgar, and A.
Ionescu Tulcea, Pointwise convergence in terms of
expectations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete
30 (1974), 17–26. MR 0358945
(50 #11402)
 [2]
J.
R. Baxter and R.
V. Chacon, Potentials of stopped distributions, Illinois J.
Math. 18 (1974), 649–656. MR 0358960
(50 #11417)
 [3]
Leo
Breiman, On the tail behavior of sums of independent random
variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete
9 (1967), 20–25. MR 0226707
(37 #2294)
 [4]
K.
È. Dambis, On decomposition of continuous
submartingales, Teor. Verojatnost. i Primenen. 10
(1965), 438–448 (Russian, with English summary). MR 0202179
(34 #2052)
 [5]
J.
L. Doob, Stochastic processes, John Wiley & Sons, Inc.,
New York; Chapman & Hall, Limited, London, 1953. MR 0058896
(15,445b)
 [6]
Lester
E. Dubins and Gideon
Schwarz, On continuous martingales, Proc. Nat. Acad. Sci.
U.S.A. 53 (1965), 913–916. MR 0178499
(31 #2756)
 [7]
Lester
E. Dubins, On a theorem of Skorohod, Ann. Math. Statist.
39 (1968), 2094–2097. MR 0234520
(38 #2837)
 [8]
W. Hall, On the Skorohod embedding theorem, J. Appl. Probability 7 (1970).
 [9]
J.
Kiefer, Skorohod embedding of multivariate RV’s, and the
sample DF, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete
24 (1972), no. 1, 1–35. MR
1554013, http://dx.doi.org/10.1007/BF00532460
 [10]
Frank
B. Knight, A reduction of continuous squareintegrable martingales
to Brownian motion, Martingales (Rep. Meeting, Oberwolfach, 1970)
Springer, Berlin, 1971, pp. 19–31. Lecture Notes in Math., Vol.
190. MR
0370741 (51 #6967)
 [11]
Itrel
Monroe, On embedding right continuous martingales in Brownian
motion, Ann. Math. Statist. 43 (1972),
1293–1311. MR 0343354
(49 #8096)
 [12]
V.
A. Rohlin, On the fundamental ideas of measure theory, Mat.
Sbornik N.S. 25(67) (1949), 107–150 (Russian). MR 0030584
(11,18f)
 [13]
D.
H. Root, The existence of certain stopping times on Brownian
motion, Ann. Math. Statist. 40 (1969), 715–718.
MR
0238394 (38 #6670)
 [14]
Stanley
Sawyer, A remark on the Skorohod representation, Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972),
67–74. MR
0310939 (46 #10037)
 [15]
Gordon
Simons, A martingale decomposition theorem, Ann. Math.
Statist. 41 (1970), 1102–1104. MR 0261678
(41 #6291)
 [16]
Hiroshi
Kunita and Shinzo
Watanabe, On square integrable martingales, Nagoya Math. J.
30 (1967), 209–245. MR 0217856
(36 #945)
 [1]
 D. G. Austin, G. A. Edgar and A. IonescuTulcea, Pointwise convergence in terms of expectations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 1726. MR 0358945 (50:11402)
 [2]
 J. R. Baxter and R. V. Chacon, Potentials of stopped distributions, Illinois J. Math. 18 (1974), 649656. MR 0358960 (50:11417)
 [3]
 L. Breiman, On the tail behavior of sums of independent random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1967), 2025. MR 37 #2294. MR 0226707 (37:2294)
 [4]
 K. È. Dambis, On decomposition of continuous submartingales, Teor. Verojatnost. i Primenen. 10 (1965), 438448 = Theor. Probability Appl. 10 (1965), 401410. MR 34 #2052. MR 0202179 (34:2052)
 [5]
 J. L. Doob, Stochastic processes, Wiley, New York; Chapman & Hall, London, 1953. MR 15, 445. MR 0058896 (15:445b)
 [6]
 L. E. Dubins and G. Schwarz, On continuous martingales, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 913916. MR 31 #2756. MR 0178499 (31:2756)
 [7]
 L. E. Dubins, On a theorem of Skorohod, Ann. Math. Statist. 39 (1968), 20942097. MR 38 #2837. MR 0234520 (38:2837)
 [8]
 W. Hall, On the Skorohod embedding theorem, J. Appl. Probability 7 (1970).
 [9]
 J. Kiefer, Skorohod embedding of multivariate random variables, and the sample distribution functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 (1972), 135. MR 49 #6382. MR 1554013
 [10]
 F. Knight, A reduction of continuous square integrable martingales to Brownian motion, Lecture Notes in Math., vol. 190, SpringerVerlag, Berlin and New York, 1970, pp. 1931. MR 0370741 (51:6967)
 [11]
 I. Monroe, On embedding right continuous martingales in Brownian motion, Ann. Math. Statist. 43 (1972), 12931311. MR 49 #8096. MR 0343354 (49:8096)
 [12]
 V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sb. 25 (67) (1949), 107150; English transl., Amer. Math. Soc. Transl. (1) 10 (1962), 152. MR 11, 18. MR 0030584 (11:18f)
 [13]
 D. H. Root, The existence of certain stopping times on Brownian motion, Ann. Math. Statist. 40 (1969), 715718. MR 38 #6670. MR 0238394 (38:6670)
 [14]
 S. Sawyer, A remark on the Skorohod representation, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 6774. MR 46 #10037. MR 0310939 (46:10037)
 [15]
 G. Simons, A martingale decomposition theorem, Ann. Math. Statist. 41 (1970), 11021104. MR 41 #6291. MR 0261678 (41:6291)
 [16]
 H. Kunita and S. Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209245. MR 36 #945. MR 0217856 (36:945)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
60J45,
31D05
Retrieve articles in all journals
with MSC:
60J45,
31D05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197705013745
PII:
S 00029947(1977)05013745
Keywords:
Potential processes
Article copyright:
© Copyright 1977
American Mathematical Society
