Resolvents and bounds for linear and nonlinear Volterra equations

Author:
J. J. Levin

Journal:
Trans. Amer. Math. Soc. **228** (1977), 207-222

MSC:
Primary 45D05

MathSciNet review:
0433162

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The asymptotic behavior of the resolvent of a linear Volterra equation is investigated without the assumption that the kernel of the equation is in . A lower bound is obtained on the solutions of a related nonlinear Volterra equation. A special case of the latter result is employed in the proof of the former result.

**[1]**Avner Friedman,*On integral equations of Volterra type*, J. Analyse Math.**11**(1963), 381–413. MR**0158232****[2]**S. I. Grossman and R. K. Miller,*Nonlinear Volterra integrodifferential systems with 𝐿¹-kernels*, J. Differential Equations**13**(1973), 551–566. MR**0348417****[3]**J. J. Levin,*A bound on the solutions of a Volterra equation*, Arch. Rational Mech. Anal.**52**(1973), 339–349. MR**0336269****[4]**J. J. Levin and D. F. Shea,*On the asymptotic behavior of the bounded solutions of some integral equations. I, II, III*, J. Math. Anal. Appl.**37**(1972), 42–82; ibid. 37 (1972), 288–326; ibid. 37 (1972), 537–575. MR**0306849****[5]**R. K. Miller,*On Volterra integral equations with nonnegative integrable resolvents*, J. Math. Anal. Appl.**22**(1968), 319–340. MR**0227707****[6]**R. K. Miller, J. A. Nohel, and J. S. W. Wong,*Perturbations of Volterra integral equations*, J. Math. Anal. Appl.**25**(1969), 676–691. MR**0240573****[7]**John A. Nohel,*Asymptotic relationships between systems of Volterra equations*, Ann. Mat. Pura Appl. (4)**90**(1971), 149–165. MR**0310575****[8]**John A. Nohel,*Asymptotic equivalence of Volterra equations*, Ann. Mat. Pura Appl. (4)**96**(1972), 339–347. MR**0336267****[9]**Komarath Padmavally,*On a non-linear integral equation*, J. Math. Mech.**7**(1958), 533–555. MR**0103400****[10]**Raymond E. A. C. Paley and Norbert Wiener,*Fourier transforms in the complex domain*, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR**1451142****[11]**Daniel F. Shea and Stephen Wainger,*Variants of the Wiener-Lévy theorem, with applications to stability problems for some Volterra integral equations*, Amer. J. Math.**97**(1975), 312–343. MR**0372521**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
45D05

Retrieve articles in all journals with MSC: 45D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1977-0433162-2

Article copyright:
© Copyright 1977
American Mathematical Society